[1] |
Yu M. Power-handling capability for RF filters[J]. IEEE Microwave Magazine,2007,8(5):88−97 doi: 10.1109/MMM.2007.904712
|
[2] |
Herlin M A,Brown S C. Breakdown of a gas at microwave frequencies[J]. Physical Review,1948,74(3):291−296 doi: 10.1103/PhysRev.74.291
|
[3] |
Herlin M A,Brown S C. Electrical breakdown of a gas between coaxial cylinders at microwave frequencies[J]. Physical Review,1948,74(8):910−913 doi: 10.1103/PhysRev.74.910
|
[4] |
Herlin M A,Brown S C. Microwave breakdown of a gas in a cylindrical cavity of arbitrary length[J]. Physical Review,1948,74(11):1650−1656 doi: 10.1103/PhysRev.74.1650
|
[5] |
Brown S C,MacDonald A D. Limits for the diffusion theory of high frequency gas discharge breakdown[J]. Physical Review,1949,76(11):1629−1633 doi: 10.1103/PhysRev.76.1629
|
[6] |
Gould L,Roberts L W. Breakdown of air at microwave frequencies[J]. Journal of Applied Physics,1956,27(10):1162−1170 doi: 10.1063/1.1722222
|
[7] |
Platzman P M,Solt E H. Microwave breakdown of air in nonuniform electric fields[J]. Physical Review,1960,119(4):1143−1149 doi: 10.1103/PhysRev.119.1143
|
[8] |
Mao Z S,Li Y,Ye M,et al. Monte Carlo simulation of microwave air breakdown in parallel plates considering electron-surface interaction[J]. Physics of Plasmas,2020,27(9):093502 doi: 10.1063/5.0010169
|
[9] |
Mao Z S,Li Y,Cai Y H,et al. Experimental investigation of material and geometry effects on microwave breakdown of evanescent-mode cavity resonators[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(9):4001−4009 doi: 10.1109/TMTT.2021.3084952
|
[10] |
Wang H H,Meng L,Liu D G,et al. Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations[J]. Physics of Plasmas,2013,20(12):122102 doi: 10.1063/1.4838236
|
[11] |
Li Y,Ye M,He Y N,et al. Surface effect investigation on multipactor in microwave components using the EM-PIC method[J]. Physics of Plasmas,2017,24(11):113505 doi: 10.1063/1.5003124
|
[12] |
Baglin V, Collins I, Henrist B, et al. A summary of main experimental results concerning the secondary electron emission of copper[R]. Geneva: CERN, 2002
|
[13] |
Surendra M,Graves D B,Morey I J. Electron heating in low-pressure RF glow discharges[J]. Applied Physics Letters,1990,56(11):1022−1024 doi: 10.1063/1.102604
|
[14] |
Raizer Y P. Gas discharge physics[M]. Berlin: Springer, 1991
|
[15] |
徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996
|
[16] |
Zhang Y,Ye M,Hu S G,et al. A low pressure discharge effect detecting method based on the nulling theory[J]. Space Electronic Technology,2019,16(3):109−114 (张勇,叶鸣,胡少光,等. 一种基于调零理论检测低气压放电效应的方法[J]. 空间电子技术,2019,16(3):109−114(in chinese) doi: 10.3969/j.issn.1674-7135.2019.03.018
Zhang Y, Ye M, Hu S G, et al. A low pressure discharge effect detecting method based on the nulling theory[J]. Space Electronic Technology, 2019, 16(3): 109-114 (in chinese) doi: 10.3969/j.issn.1674-7135.2019.03.018
|
[17] |
赵小龙;贺永宁;胡扬波;叶鸣;曹智. 一种用于射频频段电接触元件的接触阻抗测量系统及方法: 中国,CN110806506A, 2020.02. 18
|
[18] |
Campbell J D,Bowman III A,Lenters G T,et al. Collision and diffusion in microwave breakdown of nitrogen gas in and around microgaps[J]. AIP Advances,2014,4(1):017119 doi: 10.1063/1.4862680
|
[19] |
Zhu G Q,Boeuf J P,Li J X. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air[J]. Acta Physica Sinica,2012,61(23):235202 (朱国强,Boeuf J P,李进贤. 压强与功率对高气压空气微波放电自组织结构影响的数值研究[J]. 物理学报,2012,61(23):235202(in chinese) doi: 10.7498/aps.61.235202
Zhu G Q, Boeuf J P, Li J X. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air[J]. Acta Physica Sinica, 2012, 61(23): 235202 (in chinese) doi: 10.7498/aps.61.235202
|
[20] |
Sun B W,Liu D X,Liu Y F,et al. Simplification of plasma chemistry by means of vital nodes identification[J]. Journal of Applied Physics,2021,130(9):093303 doi: 10.1063/5.0063068
|