[1] |
Clemens H,Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced engineering materials,2013,15(4):191−215 doi: 10.1002/adem.201200231
|
[2] |
Appel F, Paul J D H, Oehring M. Gamma titanium aluminide alloys : science and technology[M]. Wiley‐VCH Verlag GmbH & Co. KGaA , 2011
|
[3] |
Clemens H, Smarsly W. Light-weight intermetallic titanium aluminides–status of research and development[J]. Advanced materials research, 2011, 1263(278): 551-556 .
|
[4] |
Yang R. Adances and challenges of TiAl base alloys[J]. Acta metallurgic sinica,2015,51(2):129−147 (杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报,2015,51(2):129−147(in chinese)
Yang R. Adances and challenges of TiAl base alloys[J]. Acta metallurgic sinica, 2015, 51(2): 129-147
|
[5] |
Norris G. Power house[J]. Flight International,2006,169(5040):42−44
|
[6] |
Du S,Wang S,Ding K. A novel method of friction-diffusion welding between TiAl alloy and GH3039 high temperature alloy[J]. Journal of Manufacturing Processes,2020,56:688−696 doi: 10.1016/j.jmapro.2020.05.046
|
[7] |
Cao J,Dai X,Liu J,et al. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design,2017,121:176−184
|
[8] |
Duarte L,Viana F,Ramos A,et al. Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers[J]. Journal of alloys and compounds,2012,536:S424−S427 doi: 10.1016/j.jallcom.2011.12.037
|
[9] |
Du Z, Zhang K, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for gamma-TiAl based alloy[J]. Journal of Technology & Science 2018, 150: 96-104.
|
[10] |
Liu J,Dahmen M,Ventzke V,et al. The effect of heat treatment on crack control and grain refinement in laser beam welded β-solidifying TiAl-based alloy[J]. Intermetallics,2013,40:65−70 doi: 10.1016/j.intermet.2013.04.007
|
[11] |
Liu J,Staron P,Riekehr S,et al. In situ study of phase transformations and grain refinement for optimization of laser-beam welding of a TiAl alloy[J]. Intermetallics,2015,62:27−35 doi: 10.1016/j.intermet.2015.03.003
|
[12] |
Bird R K,Wallace T A,Sankaran S N. Development of protective coatings for high-temperature metallic materials[J]. Journal of spacecraft and rockets,2004,41(2):213−220 doi: 10.2514/1.9191
|
[13] |
Bartolotta P A, Krause D L. Titanium aluminide applications in the high speed civil transport[R]. Gamma Titanium Aluminide. 1999: 1-9
|
[14] |
Li Y,Wang H,Han K,et al. Microstructure of Ti-45Al-8.5Nb-0.2W-0.03Y electron beam welding joints[J]. Journal of Materials Processing Technology,2017,250:401−409 doi: 10.1016/j.jmatprotec.2017.07.004
|
[15] |
Han K,Wang H,Zhang B,et al. Effect of thermal compensation on microstructure and mechanical properties of electron-beam welded joint for high-Nb containing TiAl/Ti600 alloys[J]. Materials & Design,2017,131(oct.):273−285
|
[16] |
Reisgen U,Olschok S,Backhaus A. Electron beam welding of titanium aluminides – Influence of the welding parameters on the weld seam and microstructure[J]. Materialwissenschaft und Werkstofftechnik,2010,41(11):897−907 doi: 10.1002/mawe.201000683
|
[17] |
Liu J,Li Y. Influence of partial heating or overall heating technology on X90 grade steel induction bend properties[J]. Mechanical engineer,2014(12):271−273 (刘金生,李玉卓. 局部加热和整体加热技术对 X90 钢级热煨弯管性能的影响[J]. 机械工程师,2014(12):271−273(in chinese) doi: 10.3969/j.issn.1002-2333.2014.12.118
Liu J, Li Y. Influence of partial heating or overall heating technology on X90 grade steel induction bend properties[J]. Mechanical engineer, 2014(12): 271-273 doi: 10.3969/j.issn.1002-2333.2014.12.118
|
[18] |
Schwaighofer E,Schloffer M,Schmoelzer T. Influence of Heat Treatments on the Microstructure of a Multi-Phase Titanium Aluminide Alloy[J]. Practical Metallography,2012(3):49
|
[19] |
Clemens H,Boeck B,Wallgram W,et al. Experimental studies and thermodynamic simulations of phase transformations in Ti-(41-45) Al-4Nb-1Mo-0.1 B alloys[J]. MRS Online Proceedings Library (OPL),2008,1128:115−120
|
[20] |
Liss K-D,Bartels A,Clemens H,et al. In-situ characterization of phase transformations and microstructure evolution in a γ-TiAl based alloy[J]. Structural Aluminides for Elevated Temperature Applications,2008,pp:137−144
|
[21] |
Schmoelzer T,Liss K D,Staron P,et al. The Contribution of High‐Energy X‐Rays and Neutrons to Characterization and Development of Intermetallic Titanium Aluminides[J]. Advanced engineering materials,2011,13(8):685−699 doi: 10.1002/adem.201000296
|
[22] |
Xu Q,Chaturvedi M C,Richards N L. The role of phase transformation in electron-beam welding of TiAl-based alloys[J]. Metallurgical & Materials Transactions A,1999,30(7):1717−1726
|
[23] |
Chen G,Zhang B,Liu W,et al. Distributive characteristic of stress field in electron beam welded joint of TiAl intermetalics plates[J]. Transactiond of the China welding institution,2010,31(1):1−4 (陈国庆,张秉刚,刘伟,等. TiAl金属间化合物电子束焊接头应力场分布特征[J]. 焊接学报,2010,31(1):1−4(in chinese)
Chen G, Zhang B, Liu W, et al. Distributive characteristic of stress field in electron beam welded joint of TiAl intermetalics plates[J]. Transactiond of the China welding institution, 2010, 31(1): 1-4
|
[24] |
Chen G,Zhang G,Yin Q,et al. Investigation of Cracks During Electron Beam Welding of γ-TiAl Based Alloy[J]. Journal of Materials Processing Technology,2020,283:1−8
|
[25] |
Li W,Liu J,Wen S,et al. Crystal orientation, crystallographic texture and phase evolution in the Ti–45Al–2Cr–5Nb alloy processed by selective laser melting[J]. Materials Characterization,2016,113:125−133 doi: 10.1016/j.matchar.2016.01.012
|
[26] |
Yi X,Liang Z,Zhang J,et al. Microcrack nucleation and Fracture Model for γ-TiAl Alloy[J]. Chemical Engineering & Machinery,2019(1):41−43 (易湘斌,梁泽芬,张俊喜,等. 一种 γ-TiAl 合金微裂纹成核及断裂模型[J]. 化工机械,2019(1):41−43(in chinese)
Yi X, Liang Z, Zhang J, et al. Microcrack nucleation and Fracture Model for γ-TiAl Alloy[J]. Chemical Engineering & Machinery, 2019(1): 41-43
|