[1] |
Chen K,Li D T,Gu Z J,et al. Latest progress of colloid electric propulsion thruster technology[J]. Chinese Journal of Vacuum Science and Technology,2019,39(10):918−926 (陈凯,李得天,谷增杰,等. 胶体推力器的研究进展及关键技术[J]. 真空科学与技术学报,2019,39(10):918−926(in chinese)
Chen K, Li D T, Gu Z J, et al. Latest progress of colloid electric propulsion thruster technology[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(10): 918-926 (in chinese)
|
[2] |
Xu Z Q,Tian L C,Ye Z W,et al. Design and experimental research on principle prototype of iodine hall thruster[J]. Chinese Journal of Vacuum Science and Technology,2022,42(6):456−461 (徐宗琦,田雷超,叶展雯,等. 碘工质霍尔推力器原理样机设计与实验研究[J]. 真空科学与技术学报,2022,42(6):456−461(in chinese)
Xu Z Q, Tian L C, Ye Z W, et al. Design and experimental research on principle prototype of iodine hall thruster[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(6): 456-461 (in chinese)
|
[3] |
Yu X F,Yan R X,Zhou X Q,et al. Modeling and evaluation of xenon charging characteristics for spacecraft electric propulsion[J]. Chinese Journal of Vacuum Science and Technology,2019,39(4):279−283 (喻新发,闫荣鑫,周雪茜,等. 航天器电推进系统氙气工质充装特性模型与评估[J]. 真空科学与技术学报,2019,39(4):279−283(in chinese)
Yu X F, Yan R X, Zhou X Q, et al. Modeling and evaluation of xenon charging characteristics for spacecraft electric propulsion[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(4): 279-283 (in chinese)
|
[4] |
Yu D R,Q L,Jiang W J,et al. Development and prospect of electric propulsion technology in china[J]. Journal of Propulsion Technology,2020,41(1):1−12 (于达仁,乔磊,蒋文嘉,等. 中国电推进技术发展及展望[J]. 推进技术,2020,41(1):1−12(in chinese) doi: 10.13675/j.cnki.tjjs.190140
Yu D R, Q L, Jiang W J, et al. Development and prospect of electric propulsion technology in china[J]. Journal of Propulsion Technology, 2020, 41(1): 1-12 (in chinese) doi: 10.13675/j.cnki.tjjs.190140
|
[5] |
Li Y,Zhou C,LYU Z,et al. Progress on high power space nuclear electric propulsion technology development[J]. Journal of Propulsion Technology,2020,41(1):12−27 (李永,周成,吕征,等. 大功率空间核电推进技术研究进展[J]. 推进技术,2020,41(1):12−27(in chinese)
Li Y, Zhou C, LYU Z, et al. Progress on high power space nuclear electric propulsion technology development[J]. Journal of Propulsion Technology, 2020, 41(1): 12-27 (in chinese)
|
[6] |
Tirila V G, Ryan C, Demairé A, et al. Zinc Propellant Storage and Delivery System for Hall Thrusters[C]// AIAA Propulsion and Energy 2021 Forum, VIRTUAL EVENT, AIAA 2021-3407, 2021
|
[7] |
Dankanich J W, Selby M, Polzin K A, et al. The Iodine Satellite (iSat) Project Development through Critical Design Review (CDR)[C]// 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, AIAA 2016-4540, 2016
|
[8] |
Azziz Y, Warner N Z, Martinez-Sanchez M, et al. High Voltage Plume Measurements and Internal Probing of the BHT-1000 Hall Thruster[C]// 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, USA, AIAA 2004-4097, 2004
|
[9] |
Hofer R R, Johnson L K, Goebel D M, et al. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties[C]// 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, USA, AIAA 2006-4482, 2006
|
[10] |
Szabo J, Robin M, Paintal S, et al. Iodine Propellant Space Propulsion[C]//33rd International Electric Propulsion Conference, Washington, USA, IEPC 2013-311, 2013
|
[11] |
Szabo J,Pote B,Paintal S,et al. Performance Evaluation of an Iodine-Vapor Hall Thruster[J]. Journal of Propulsion and Power,2012,28(4):848−857 doi: 10.2514/1.B34291
|
[12] |
Polzin K A, Peeples S. Iodine Hall Thruster Propellant Feed System for a CubeSat[C]// 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, AIAA 2014-3915, 2014
|
[13] |
Samples S A, Dankanich J W, Polzin K A. Iodine Hall Thruster Feed System Design, Development and Testing[C]// 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, AIAA 2015-3823, 2015
|
[14] |
Paganucci F, Saravia M M. Development of an Iodine Feeding System for Low Power Ion and Hall Effect Thrusters[C]// AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, AIAA 2019-3996, 2019
|
[15] |
Liu H,Niu X,Li X,et al. Reviews on electrical propulsion technology using iodine alternatives[J]. Journal of Propulsion Technology,2019,40(1):12−25 (刘辉,牛翔,李鑫,等. 碘工质电推进技术研究综述[J]. 推进技术,2019,40(1):12−25(in chinese)
Liu H, Niu X, Li X, et al. Reviews on electrical propulsion technology using iodine alternatives[J]. Journal of Propulsion Technology, 2019, 40(1): 12-25 (in chinese)
|
[16] |
Zhang X H,Zhang Z H,Jia S X,et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology,2022,24(10):1−12
|
[17] |
Xu Z Q,Hua Z W,Wang P Y,et al. Principle and progress of hall thruster with iodine[J]. Journal of Rocket Propulsion,2019,45(1):1−7 (徐宗琦,华志伟,王平阳,等. 碘工质霍尔推力器原理与研究进展[J]. 火箭推进,2019,45(1):1−7(in chinese)
Xu Z Q, Hua Z W, Wang P Y, et al. Principle and progress of hall thruster with iodine[J]. Journal of Rocket Propulsion, 2019, 45(1): 1-7 (in chinese)
|
[18] |
Polzin K A, Peeples S R, Seixal J F, et al. Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission[C]// Presented at Joint Conference of 30th International Symposium on Space Technology and Science, Hyogo-Kobe, Japan, 2015
|
[19] |
Wang X D,Li G X,Chen J,et al. Simulation study on flow characteristics of a xeon micro propulsion system under regulation of piezoelectric proportional valve[J]. Journal of Propulsion Technology,2019,40(12):2867−2873 (汪旭东,李国岫,陈君,等. 压电比例阀调节的氙气微推进系统流量特性仿真研究[J]. 推进技术,2019,40(12):2867−2873(in chinese)
Wang X D, Li G X, Chen J, et al. Simulation study on flow characteristics of a xeon micro propulsion system under regulation of piezoelectric proportional valve[J]. Journal of Propulsion Technology, 2019, 40(12): 2867-2873 (in chinese)
|
[20] |
Feng Y B,Sun F,Li S Z. Effects of temperature on vectoring nozzle electro-hydraulic servo system[J]. Journal of Propulsion Technology,2017,38(12):2843−2850 (冯永保,孙飞,李淑智. 温度对矢量喷管电液伺服系统影响研究[J]. 推进技术,2017,38(12):2843−2850(in chinese)
Feng Y B, Sun F, Li S Z. Effects of temperature on vectoring nozzle electro-hydraulic servo system[J]. Journal of Propulsion Technology, 2017, 38(12): 2843-2850 (in chinese)
|
[21] |
Gordon S, McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications[R]. NASA-RP-1311, 1994
|
[22] |
McBride B J, Zehe M J, Gordon S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species[R]. NASA/TP-2002-211556, 2002
|