[1] Shimada M,Setyawan H,Hayashi Y,et al. Incorporation of dust particles into a growing film during silicon dioxide deposition from a TEOS/O2 plasma[J]. Aerosol Science and Technology,2005,39(5):408−414 doi: 10.1080/027868290950257
[2] Goshawk E,Terrie C I. Coming clean: understanding and mitigating optical contamination and laser induced damage in advanced LIGO[J]. Laser-Induced Damage in Optical Materials,2014,9237:923702
[3] Chen Z J. Common contamination and cleaning treatment in vacuum equipment[J]. Electronic Industry Special Equipment,2006,35(6):61−64 (陈占杰. 真空装置中的常见污染和清洁处理[J]. 电子工业专用设备,2006,35(6):61−64(in chinese) doi: 10.3969/j.issn.1004-4507.2006.06.016 Chen Z J. Common Contamination and Cleaning Treatment in Vacuum Equipment[J]. Electronic Industry Special Equipment, 2006, 35(6): 61-64 (in chinese) doi: 10.3969/j.issn.1004-4507.2006.06.016
[4] Lei H,Xiao J Q,Lang W C,et al. Application of magnetic field simulation in magnetron sputtering/cathodic arc ion plating[J]. China Surface Engineering,2015,28(02):27−44 (雷浩,肖金泉,郎文昌等. 磁场模拟在磁控溅射/阴极弧离子镀中的应用[J]. 中国表面工程,2015,28(02):27−44(in chinese) doi: 10.11933/j.issn.1007-9289.2015.02.002 Lei H, Xiao J Q, Lang W C, et al. Application of magnetic field simulation in magnetron sputtering/cathodic arc ion plating[J]. China Surface Engineering, 2015, 28(02): 27-44 (in chinese) doi: 10.11933/j.issn.1007-9289.2015.02.002
[5] Litnovsky A M,Voitsenya V S,Richler R,et al. Diagnostic mirrors for ITER: research in the frame of the International Tokamak Physics Activity[J]. Nuclear Fusion,2019,59(6):066029 doi: 10.1088/1741-4326/ab1446
[6] Kim D,Mum J,Kim H,et al. Development of particle characteristics diagnosis system for nanoparticle analysis in vacuum[J]. Review of Scientific Instruments,2016,87(2):023304 doi: 10.1063/1.4942247
[7] Kim D,Kim T,Park S H,et al. Characterization of particle generated during plasma-enhanced chemical vapor deposition on amorphous carbon layer using particle beam mass spectrometer. Journal of Vacuum[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2018,36(2):021506
[8] Tachibana K,Michiana M,Takamasa K,et al. Smart optical measurement probe for autonomously detecting Nano-defects on bare semiconductor wafer surface: verification of proposed concept[J]. Precision Engineering,2020,61:93−102 doi: 10.1016/j.precisioneng.2019.09.019
[9] Li F,Wei D,Liang H,et al. Oxidation mechanism of ysz/nicr coating prepared by hollow cathode glow discharge phenomenon and multi-arc ion plating[J]. Journal of Materials Engineering and Performance,2021,30:2832−2842 doi: 10.1007/s11665-021-05598-3
[10] Takahashi K M,Daugherty J E. Current capabilities and limitations of in situ particle monitors in silicon processing equipment[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1996,14(6):2983−2993
[11] Lei M,Li X P. Research progress on control technology of extreme ultraviolet optical surface contamination[J]. Laser & Optoelectronics Progress,2013,50(3):40−46 (雷敏,李小平. 极紫外光学表面污染控制技术的研究进展[J]. 激光与光电子学进展,2013,50(3):40−46(in chinese) Lei M, Li X P. Research progress on control technology of extreme ultraviolet optical surface contamination[J]. Laser & Optoelectronics Progress, 2013, 50(3): 40-46 (in chinese)
[12] Anshar H,Shams M,et al. Microchannel heat transfer and dispersion of nanoparticles in slip flow regime with constant heat flux[J]. International Communications in Heat and Mass Transfer,2009,36(10):1060−1066 doi: 10.1016/j.icheatmasstransfer.2009.07.011
[13] Barron R F,Wang X,Ameer T A,et al. The Gratz problem extended to slip-flow[J]. International Journal of Heat and Mass Transfer,1997,40(8):1817−1823 doi: 10.1016/S0017-9310(96)00256-6
[14] Maxey M R,Riley J. Equation of motion for a small rigid sphere in a no uniform flow[J]. The Physics of Fluids,1983,26(4):883−889 doi: 10.1063/1.864230
[15] Wang Q,Squires K D,Chen M,et al. On the role of the lift force in turbulence simulations of particle deposition[J]. International Journal of Multiphase Flow,1997,23(4):749−763 doi: 10.1016/S0301-9322(97)00014-1
[16] Nasr H,Ahmadi G,Mcloughlin J B. A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations[J]. Journal of Fluid Mechanics,2009,640:507−536 doi: 10.1017/S0022112009992011
[17] Dorgan A J,Loth E. Simulation of particles released near the wall in a turbulent boundary layer[J]. International journal of multiphase flow,2004,30(6):649−673 doi: 10.1016/j.ijmultiphaseflow.2004.05.006
[18] Li Y,McLaughlin J B,Kontomaris K,et al. Numerical simulation of particle-laden turbulent channel flow[J]. Physics of Fluids,2001,13(10):2957−2967 doi: 10.1063/1.1396846
[19] Yamamoto Y,Potthoff M,Tanaka T,et al. Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions[J]. Journal of Fluid Mechanics,2001,442:303−334 doi: 10.1017/S0022112001005092
[20] Lain S. Study of turbulent two-phase gas-solid flow in horizontal channels[J]. 2013. Indian J Chemo Techno,2013,20(2):128−136
[21] Pan Y,Banerjee S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids,1996,8(10):2733−2755 doi: 10.1063/1.869059
[22] Phung T N,Brady J F,Bossis G. Stokesian dynamics simulation of Brownian suspensions[J]. Journal of Fluid Mechanics,1996,313:181−207 doi: 10.1017/S0022112096002170
[23] Yu D,Hu F. Application of the “Rock’n’Roll” (RNR) resuspension model with non-zero slip velocities on particle and substrate surfaces[J]. Journal of Aerosol Science,2021,151:105675 doi: 10.1016/j.jaerosci.2020.105675
[24] Greif F,Kratzsch C,Forger T,et al. Assessment of particle-tracking models for dispersed particle-laden flows implemented in Open FOAM and ANSYS FLUENT[J]. Engineering Applications of Computational Fluid Mechanics,2016,10(1):30−43 doi: 10.1080/19942060.2015.1104266
[25] 赵烨梁, 胡晓, 张少辉. 一种用于无尘化真空过程的慢充慢抽装置及法: CN110925180A[P]. 2020. Zhao Y L, Hu X, Zhang S H. A slow pumping and slow venting device and method for dust-free vacuum process: CN110925180A[P]. 2020
[26] Liu Z Y,Zhou J. Numerical simulation of gas-particle two-phase flow under slip velocity condition[J]. Journal of Thermal Science and Technology,2019,18(5):367−372 (刘振宇,周俊. 速度滑移条件下气体-微颗粒两相流动数值模拟研究[J]. 热科学与技术,2019,18(5):367−372(in chinese) doi: 10.13738/j.issn.1671-8097.218057 Liu Z Y, Zhou J. Numerical simulation of gas-particle two-phase flow under slip velocity condition. Journal of Thermal Science and Technology, 2019, 18(5): 367-372 (in chinese) doi: 10.13738/j.issn.1671-8097.218057
[27] Zhou J H Fang H Y. Selection of characterization parameters for aggregate particle size detection using image method and experimental study[J]. Acta Metrologica Sinica,2018,39(6):783−790 (周建华,房怀英. 图像法集料粒径检测表征参数的选择及实验研究[J]. 计量学报,2018,39(6):783−790(in chinese) doi: 10.3969/j.issn.1000-1158.2018.06.06 Zhou J H Fang H Y. Selection of characterization parameters for aggregate particle size detection using image method and experimental study[J]. Acta Metrologica Sinica, 2018, 39(6): 783-790 (in chinese) doi: 10.3969/j.issn.1000-1158.2018.06.06