[1] |
Е. R. 索科洛夫, Н. М. 津格尔. 喷射器[M]. 黄秋云, 译. 北京: 科学出版社, 1977: 8-10
Skolov E R, Zinger H M. Ejector[M]. Huang Q Y, trans. Beijing: Science Press, 1977: 8-10
|
[2] |
Haghparast P,Sorin M V,Nesreddine H. The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle[J]. Energy,2018,162:728−743 doi: 10.1016/j.energy.2018.08.017
|
[3] |
Li H,Wang X D,Huang H L,et al. Numerical study on the effect of superheat on the steam ejector internal flow and entropy generation for MED-TVC desalination system[J]. Desalination,2022,537:115874 doi: 10.1016/j.desal.2022.115874
|
[4] |
Munday J T,Bagster D F. A new ejector theory applied to steam jet refrigeration[J]. Industrial & Engineering Chemistry Process Design and Development,1977,16(4):442−449
|
[5] |
Dutton J C,Carroll B F. Limitation of ejector performance due to exit choking[J]. Journal of Fluids Engineering,1988,110(1):91−93 doi: 10.1115/1.3243516
|
[6] |
Eames I W,Aphornratana S,Haider H. A theoretical and experimental study of a small-scale steam jet refrigerator[J]. International Journal of Refrigeration,1995,18(6):378−386 doi: 10.1016/0140-7007(95)98160-M
|
[7] |
Zhu Y H,Cai W J,Wen C Y,et al. Simplified ejector model for control and optimization[J]. Energy Conversion and Management,2008,49(6):1424−1432 doi: 10.1016/j.enconman.2007.12.025
|
[8] |
Riffat S B,Gan G,Smith S. Computational fluid dynamics applied to ejector heat pumps[J]. Applied Thermal Engineering,1996,16(4):291−297 doi: 10.1016/1359-4311(95)00033-X
|
[9] |
Riffat S B,Omer S A. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid[J]. International Journal of Energy Research,2001,25(2):115−128 doi: 10.1002/er.666
|
[10] |
Wu Y F,Zhao H X,Zhang C Q,et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy,2018,151:79−93 doi: 10.1016/j.energy.2018.03.041
|
[11] |
Sriveerakul T,Aphornratana S,Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries[J]. International Journal of Thermal Sciences,2007,46(8):823−833 doi: 10.1016/j.ijthermalsci.2006.10.012
|
[12] |
Chang Y J,Chen Y M. Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle[J]. Experimental Thermal and Fluid Science,2000,22(3-4):203−211 doi: 10.1016/S0894-1777(00)00028-5
|
[13] |
Ruangtrakoon N,Aphornratana S,Sriveerakul T. Experimental studies of a steam jet refrigeration cycle: effect of the primary nozzle geometries to system performance[J]. Experimental Thermal and Fluid Science,2011,35(4):676−683 doi: 10.1016/j.expthermflusci.2011.01.001
|
[14] |
Varga S,Oliveira A C,Ma X L,et al. Experimental and numerical analysis of a variable area ratio steam ejector[J]. International Journal of Refrigeration,2011,34(7):1668−1675 doi: 10.1016/j.ijrefrig.2010.12.020
|
[15] |
Karthick S K,Rao S M V,Jagadeesh G,et al. Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate[J]. Energy,2018,161:832−845 doi: 10.1016/j.energy.2018.07.135
|
[16] |
Zhang G, Zang H, Ma X, et al. Performance optimization experiment of supersonic steam jet pump based on nano-tracerbased planar laser scattering[C]//Proceedings of the VASSCAA-10 & CVS, 2021
|
[17] |
Ma X, Zhang G, Wang X. Analysis of the influence of operating parameters on the optimal structure of steam ejector based on multi-parameter analysis[C]//Proceedings of the VASSCAA-10 & CVS, 2021
|
[18] |
Ariafar K,Cochrane T,Malpress R,et al. Pitot and static pressure measurement and CFD simulation of a co-flowing steam jet[J]. Experimental Thermal and Fluid Science,2018,97:36−47 doi: 10.1016/j.expthermflusci.2018.04.004
|
[19] |
Li Y F,Deng J Q,Ma L. Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles[J]. Energy,2019,186:115839 doi: 10.1016/j.energy.2019.07.169
|
[20] |
Wen C,Gong L,Ding H B,et al. Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system[J]. Applied Energy,2020,279:115831 doi: 10.1016/j.apenergy.2020.115831
|
[21] |
Li H,Wang X D,Ning J X,et al. Numerical investigation of the nozzle expansion state and its effect on the performance of the steam ejector based on ideal gas model[J]. Applied Thermal Engineering,2021,199:117509 doi: 10.1016/j.applthermaleng.2021.117509
|
[22] |
Yang Y,Karvounis N,Walther J H,et al. Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations[J]. Energy,2021,237:121483 doi: 10.1016/j.energy.2021.121483
|
[23] |
Faber T. Fluid dynamics for physicists[M]. Cambridge: Cambridge University Press, 1995
|
[24] |
Sriveerakul T,Aphornratana S,Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. International Journal of Thermal Sciences,2007,46(8):812−822 doi: 10.1016/j.ijthermalsci.2006.10.014
|
[25] |
Aphomratana S. Theoretical and experimental investigation of a combined ejector-absorption refrigerator[D]. Sheffield: University of Sheffield, 1995
|
[26] |
Pianthong K,Seehanam W,Behnia M,et al. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique[J]. Energy Conversion and Management,2007,48(9):2556−2564 doi: 10.1016/j.enconman.2007.03.021
|