[1] Fridman A,Chirokov A,Gutsol A. Non-thermal atmospheric pressure discharges[J]. Journal of Physics D:Applied Physics,2005,38(2):R1−R24 doi: 10.1088/0022-3727/38/2/R01
[2] Wang K,Li J,Ren C S,et al. Surface modification of polyethylene (PE) films using dielectric barrier discharge plasma at atmospheric pressure[J]. Plasma Science and Technology,2008,10(4):433−437 doi: 10.1088/1009-0630/10/4/07
[3] Wang K,Li J. Surface modification of polyethylene membrane with air dielectric barrier discharge plasma[J]. Chinese Journal of Vacuum Science and Technology,2013,33(4):337−341 (王坤,李建. 空气介质阻挡放电对聚乙烯表面吸湿性的改性研究[J]. 真空科学与技术学报,2013,33(4):337−341(in chinese) Wang K, Li J. Surface modification of polyethylene membrane with air dielectric barrier discharge plasma[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(4): 337-341 (in chinese)
[4] Zhuang Y,Liu F,Chu H J,et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams,2021,33(6):065017-1−9 (庄越,刘锋,储海靖,等. 交流和纳秒脉冲Ar/H2O介质阻挡放电聚丙烯材料表面亲水性改性对比研究[J]. 强激光与粒子束,2021,33(6):065017-1−9(in chinese) Zhuang Y, Liu F, Chu H J, et al. Comparison study of PP hydrophilic surface modification by Ar/H2O dielectric barrier discharge excited by AC and nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2021, 33(6): 065017-1-9
[5] Wang K,Wang S Q,Li J,et al. Influence of porous anodic alumina dielectric on atmospheric pressure dielectric barrier discharge plasma[J]. Chinese Journal of Vacuum Science and Technology,2023,43(2):90−95 (王坤,王世庆,李建,等. 多孔阳极氧化铝介质对大气压介质阻挡放电等离子体的影响[J]. 真空科学与技术学报,2023,43(2):90−95(in chinese) doi: 10.13922/j.cnki.cjvst.202203005 Wang K, Wang S Q, Li J, et al. Influence of porous anodic alumina dielectric on atmospheric pressure dielectric barrier discharge plasma[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(2): 90-95 (in chinese) doi: 10.13922/j.cnki.cjvst.202203005
[6] Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing,2003,23(1):1−46 doi: 10.1023/A:1022470901385
[7] Kunhardt E E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas[J]. IEEE Transactions on Plasma Science,2000,28(1):189−200 doi: 10.1109/27.842901
[8] Kunhardt E E, Becker K H. Method for generating and maintaining a glow plasma discharge: US6005349[P]. 1999
[9] Moskwinski L. Study of atmospheric pressure Capillary Plasma Electrode Discharge (CPED)[D]. Hoboken: Stevens Institute of Technology, 2009
[10] Becker K H,Schoenbach K H,Eden J G. Microplasmas and applications[J]. Journal of Physics D:Applied Physics,2006,39(3):R55−R70 doi: 10.1088/0022-3727/39/3/R01
[11] Koutsospyros A,Yin S M,Christodoulatos C,et al. Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge plasmas[J]. International Journal of Mass Spectrometry,2004,233(1-3):305−315 doi: 10.1016/j.ijms.2003.12.033
[12] Jessensky O,Müller F,Gösele U. Self-organized formation of hexagonal pore arrays in anodic alumina[J]. Applied physics Letters,1998,72(10):1173−1175 doi: 10.1063/1.121004
[13] Li F Y,Zhang L,Metzger R M. On the growth of highly ordered pores in anodized aluminum oxide[J]. Chemistry of Materials,1998,10(9):2470−2480 doi: 10.1021/cm980163a
[14] Park S J,Eden J G. Microdischarge devices with a nanoporous Al2O3 dielectric: operation in Ne and air[J]. IEEE Transactions on Plasma Science,2005,33(2):572−573 doi: 10.1109/TPS.2005.845268
[15] Park S J,Kim K S,Eden J G. Nanoporous alumina as a dielectric for microcavity plasma devices: multilayer Al/Al2O3 structures[J]. Applied Physics Letters,2005,86(22):221501 doi: 10.1063/1.1923747
[16] Hussain S,Qazi H I A,Badar M A. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes[J]. Physics of Plasma,2014,21(3):030702 doi: 10.1063/1.4868424
[17] Hussain S,Qazi H I A,Malik A A,et al. Glow modes in radio frequency atmospheric discharge operating with and without anodized electrodes[J]. IEEE Transactions on Plasma Science,2014,42(10):2410−2411 doi: 10.1109/TPS.2014.2326683
[18] Qazi H I A,Sharif M,Hussain S,et al. Spectroscopic study of a radio-frequency atmospheric pressure dielectric barrier discharge with anodic alumina as the dielectric[J]. Plasma Science and Technology,2013,15(9):900−903 doi: 10.1088/1009-0630/15/9/13
[19] Ashraf H,Shah S Z A,Qazi H I A,et al. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology,2019,21(2):025403 doi: 10.1088/2058-6272/aaede1
[20] Koo I G,Choi M Y,Kim J H,et al. Microdischarge in porous ceramics with atmospheric pressure high temperature H2O/SO2 gas mixture and its application for hydrogen production[J]. Japanese Journal of Applied Physics,2008,47(6):4705−4709 doi: 10.1143/JJAP.47.4705
[21] Kawasaki T. Manufacturing of anodic porous alumina for barriers in a dielectric barrier discharge reactor[J]. Journal of Electrostatics,2008,66(7-8):395−400 doi: 10.1016/j.elstat.2008.04.006
[22] Abidat R, Rebiai S, Benterrouche L. Numerical simulation of atmospheric dielectric barrier discharge in helium gas using COMSOL multiphysics[C]//Proceedings of the 3rd International Conference on Systems and Control, Algiers: IEEE, 2013: 29-31
[23] Jovanović A P,Stankov M N,Loffhagen D,et al. Automated fluid model generation and numerical analysis of dielectric barrier discharges using comsol[J]. IEEE Transactions on Plasma Science,2021,49(11):3710−3718 doi: 10.1109/TPS.2021.3120507