[1] |
Cianciolo A D, Powell R W. Entry, descent, and landing guidance and control approaches to satisfy mars human mission landing criteria[J]. Spaceflight Mechanics,2017,160:1397−1410
|
[2] |
Lillard R, Olejniczak J. Human mars edl pathfinder study: assessment of technology development gaps and mitigations[C]. IEEE Aerospace Conference, 2017: 1-8
|
[3] |
董捷, 饶炜, 王闯, 等. 国外火星探测典型失败案例分析与应对策略研究[J]. 航天器工程,2019,5(5):122−129 (in Chinese) doi: 10.3969/j.issn.1673-8748.2019.05.019
Dong Jie, Rao Wei, Wang Chuang, et al. Research on the typical failure cases and coping strategy of foreign mars exploration[J]. Spacecraft Engineering,2019,5(5):122−129 doi: 10.3969/j.issn.1673-8748.2019.05.019
|
[4] |
Subrahmanyam P, Rasky D. Entry, descent, and landing technological barriers and crewed mars vehicle performance analysis[J]. Progress in Aerospace Sciences,2017,91(1):1−26
|
[5] |
Xu Miao, Xu Yiteng, Xiang Shiqi, et al. A model for the simulation of the mars edl process[J]. Journal of Physics: Conference Series,2022,2282:012017 doi: 10.1088/1742-6596/2282/1/012017
|
[6] |
Li, Shuang, Jiang Xiuqiang. Review and prospect of guidance and control for mars atmospheric entry[J]. Progress in Aerospace Sciences,2014,69:40−57 doi: 10.1016/j.paerosci.2014.04.001
|
[7] |
马广富, 龚有敏, 郭延宁, 等. 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报,2020,41(7):23651−023651 (in Chinese) doi: 10.7527/S1000-6893.2020.23651
Ma Guangfu, Gong Youmin, Guo Yanning, et al. Human mars mission: research progress and gnc key technologies during edl[J]. Acta Aeronauticaet Astronautica Sinica,2020,41(7):23651−023651 doi: 10.7527/S1000-6893.2020.23651
|
[8] |
Wercinski P, Smith B, Yount B, et al. ADEPT sounding rocket one (SR-1) flight experiment overview[C]. 2017 IEEE Aerospace conference, 2017: 1-7
|
[9] |
Cassell A M, Brivkalns C A, Bowles J V, et al. Human mars mission design study utilizing the adaptive deployable entry and placement technology[C]. IEEE Aerospace Conference, 2017: 1-16
|
[10] |
Cassell A, Smith B, Wercinski P, et al. ADEPT, A Mechanically Deployable Re-Entry Vehicle System, Enabling Interplanetary CubeSat and Small Satellite Missions[J]. 2018
|
[11] |
Salotti J M. Launcher size optimization for a crewed mars mission[J]. Acta Astronautica,2022,191:235−244 doi: 10.1016/j.actaastro.2021.11.016
|
[12] |
Peacocke L, Bruce P J K, Santer M. Coupled aerostructural modeling of deployable aerodecelerators for mars entry[J]. Journal of Spacecraft & Rockets,2019,56(4):1221−1230
|
[13] |
Xiangyang Hou, Hong Nie, Hao Wang, et al. Aerodynamic deceleration of ultra-large deployable heat-resistant structures for efficient descending of space station payload[J]. Microgravity Science and Technology,2022,34(4):55 doi: 10.1007/s12217-022-09972-1
|
[14] |
Danielle S. O’Driscoll, Paul J. K. Bruce, et al. Design and dynamic analysis of rigid foldable aeroshells for atmospheric entry[J]. Journal of Spacecraft and Rockets,2021,58(3):741−753 doi: 10.2514/1.A34845
|
[15] |
张鹏, 苏南, 赵铄, 等. 半刚性机械展开式气动减速技术机构与热防护研究[J]. 航天返回与遥感,2019,40(6):1−10 (in Chinese)
Zhang Peng, Su Nan, Zhao Shuo, et al. Research on mechanism and thermal protection of semi-rigid mechanical deployable aerodynamic deceleration technology[J]. Spacecraft Recovery & Remote Sensing,2019,40(6):1−10
|
[16] |
Chen Zijie, Shi Chuang, Guo Hongwei, et al. Design of a deployable mechanism based on 7R-6R-double-loop units for mars decelerators[J]. Mechanism and Machine Theory,2023,181:105180 doi: 10.1016/j.mechmachtheory.2022.105180
|
[17] |
Soutis, Constantinos. Wu, Rui. Diver, Carl, et al. Flexible heat shields deployed by centrifugal force.[J]. Acta Astronautica,2018,152:78−87 doi: 10.1016/j.actaastro.2018.06.021
|
[18] |
史明东, 原梅妮, 侯秀成, 等. 机械展开式超音速气动减速器模态分析[J]. 兵器装备工程学报,2018,39(4):143−146 (in Chinese) doi: 10.11809/bqzbgcxb2018.04.030
Shi Mingdong, Yuan Meini, Hou Xiucheng, et al. Analysis on natural vibration characteristics of deployable aerodynamic decelerator[J]. Journal of Ordnance Equipment Engineering,2018,39(4):143−146 doi: 10.11809/bqzbgcxb2018.04.030
|
[19] |
Peacocke L, O’Driscoll D, Bruce P, et al. Mechanically deployable aero-decelerators for mars entry[C]//International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering. Monopoli, 2019
|
[20] |
李丽芳, 郭朋真, 刘荣强. 一种空间超大型可展开柔性聚光器[J]. 航空学报,2018,39(201):722187−722187 (in Chinese)
Li Lifang, Guo Pengzhen, Liu Rongqiang. A space large-scale deployable compliant concentrator[J]. Acta Aeronauticaet Astronautica Sinica,2018,39(201):722187−722187
|
[21] |
Sudarshan K, Bingyan L. Design of Lightweight Deployable antennas using the tensegrity principle[A]. 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments[C], Cleveland, Ohio , 2018
|
[22] |
高明星, 刘荣强, 李冰岩, 等. 空间可展开三棱柱伸展臂设计与优化[J]. 机械工程学报,2020,56(15):129−137 (in Chinese) doi: 10.3901/JME.2020.15.129
Gao Mingxing, Liu Rongqiang, Li Bingyan, et al. Design and optimization of space deployable tri-prism mast[J]. Journal of Mechanical Engineering,2020,56(15):129−137 doi: 10.3901/JME.2020.15.129
|
[23] |
Shi, Chuang , Guo, Hongwei , Cheng, Yadi. et al Design and multi-objective comprehensive optimization of cable-strut tensioned antenna mechanism[J]. Acta Astronautica. 2021, 178: 406-422
|
[24] |
Xiao, Hang, Lv, Shengnan, Ding, Xilun. Tension cable distribution of a membrane antenna frame based on stiffness analysis of the equivalent 4-SPS-S parallel mechanism.[J]. Mechanism & Machine Theory,2018,124:133−149
|
[25] |
肖航, 吕胜男, 李龙, 等. 基于线性互补理论的可展开索-桁架结构静力学分析[J]. 机械工程学报,2022,58(5):18−25(in Chinese)
Xiao Hang, Lv Shengnan, Li Long, et al. Static Analysis of deployable cable-truss structures based on linear complementarity theory[J]. Journal of Mechanical Engineering,2022,58(5):18−25
|
[26] |
Danielle S O D, Paul J K B, Matthew S. Origami-based tps folding concept for deployable mars entry vehicles[C]//AIAA Scitech Forum. 2020: 1897
|