[1] 李建刚. 托卡马克研究的现状及发展[J]. 物理,2016,45(2):88−97(in Chinese) Li Jiangang. The status and progress of tokamak research[J]. Physics,2016,45(2):88−97
[2] Yuan Xiaolin, Jia Kai, Chen Yue, et al. A support vector machine framework for fault detection in molecular pump[J]. Journal of Nuclear Science and Technology. 2022, 60:72−82
[3] 黄竞楠, 王少红, 马超. 基于SVD-EEMD和BP神经网络的滚动轴承故障诊断[J]. 北京信息科技大学学报(自然科学版),2019,34(02):69−74(in Chinese) Huang Jingnan, Wang Shaohong, Ma Chao. Fault diagnosis of rolling bearing based on SVD-EEMD and BP neural network[J]. Journal of Beijing Information Science& Technology University,2019,34(02):69−74
[4] 熊剑, 邓松, 时大方. 基于改进残差网络的滚动轴承故障诊断[J]. 轴承,2020(11):50−55(in Chinese) Xiong Jian, Deng Song, Shi Dafang. Fault diagnosis for rolling bearing based on improved residual network[J]. Bearing,2020(11):50−55
[5] 贾凯, 江明, 袁啸林, 等. 基于代价敏感型LightGBM的分子泵故障检测[J]. 电子测量与仪器学报,2022,36(10):55−64(in Chinese) Jia Kai, Jiang Ming, Yuan Xiaolin, et al. Fault detection of molecular pump based on cost-sensitive LightGBM[J]. Journal of Electronic Measurement and Instrumentation,2022,36(10):55−64
[6] 慕晓冬, 魏轩, 曾昭菊. 基于注意力残差网络的航天器测控系统故障诊断[J]. 仪器仪表学报,2022,43(9):81−87(in Chinese) Mu Xiaodong, Wei Xuan, Zeng Zhaoju. Fault diagnosis method of spacecraft tracking telemetry and control system based on the attention residual network[J]. Chinese Journal of Scientific Instrument,2022,43(9):81−87
[7] Zhou Funa, Hu Po, Yang Shuai, et al. A multimodal feature fusion-based deep learning method for online fault diagnosis of rotating machinery[J]. Sensors, 2018, 18(10):3521
[8] Shuai Jun, Shen Changqing, Zhu Zhongkui. Adaptive morphological feature extraction and support vector regressive classification for bearing fault diagnosis[J]. International Journal of Rotating Machinery, 2017, (2017):1−10
[9] 王骁贤, 陆思良, 何清波, 等. 变转速工况下基于多传感器信号深度特征融合的电机故障诊断研究[J]. 仪器仪表学报, 2022, 43(3):59−67(in Chinese) Wang Xiaoxian, Lu Siliang, He Qingbo, et al. Motor fault diagnosis based on deep feature funsion of multi-sensor data under variable speed condition[J]. Chinese Journal of Scientific Instrument, 2022, 43(3):59−67
[10] Li Qiang, Yu Jingyuan, Mu Baichun, et al. BP neural network prediction of the mechanical properties of porous NiTi shape memory alloy prepared by thermal explosion reaction[J]. Materials Science and Engineering:A,2006,419(1−2):214−217 doi: 10.1016/j.msea.2005.12.027
[11] 曹洁, 张玉林, 王进花, 等. 基于VMD和SVPSO-BP的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(09):294−301(in Chinese) Cao Jie, Zhang Yulin, Wang Jinhua, et al. Fault diagnosis of rolling bearing based on VMD and SVPSO-BP[J]. Acta Energiae Solaris Sinica, 2022, 43(09):294−301
[12] 董珍一, 林莉, 孙旭, 等. 基于BP神经网络的超声表面波定量表征金属表层裂纹深度研究[J]. 仪器仪表学报,2019,40(8):31−38(in Chinese) Dong Zhenyi, Lin Li, Sun Xu, et al. Study on the quantitative characterization of mental surface crack depth through BP neural network combined with SAW technique[J]. Chinese Journal of Scientific Instrument,2019,40(8):31−38
[13] 张越, 张峰, 张峰瑞, 等. 一种基于BP神经网络的轮胎磨损程度检测算法[J]. 电气自动化, 2023, 45(01):109−112(in Chinese) Zhang Yue, Zhang Feng, Zhang Fengrui, et al. A tire wear detection algorithm based on BP neural network[J]. Electrical Automation, 2023, 45(01):109−112
[14] 罗巍, 卢博, 陈菲, 等. 基于PSO-SVM及时序环节的数控刀架故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(02):392−399(in Chinese) Luo Wei, Lu Bo, Chen Fei, et al. Fault diagnosis method of NC turret based on PSO-SVM and time sequence[J]. Journal of Jilin University, 2022, 52(02):392−399
[15] 陶志勇, 于子佳, 林森. PSO_SVM算法在太阳能电池板裂缝缺陷检测研究[J]. 电子测量与仪器学报,2021,35(1):18−25(in Chinese) Tao Zhiyong, Yu Zijia, Lin Sen. Research on crack defect detection of solar cell based on PSO_SVM[J]. Journal of Electronic Measurement and Instrumentation,2021,35(1):18−25
[16] 王文杰, 韩振华, 黄从兵, 等. 基于PSO的水利蜗壳泵叶轮和导叶匹配设计[J]. 中南大学学报(自然科学版),2022,53(11):4282−4291(in Chinese) Wang Wenjie, Han Zhenhua, Huang Congbing, et al. Matching design of impeller and diffuser of hydraulic volute pump based on PSO[J]. Journal of Central South University(Science and Technology),2022,53(11):4282−4291
[17] 何存富, 王志, 刘秀成, 等. 基于GA-PSO混合算法的钢杆磁特性参数识别方法[J]. 仪器仪表学报,2017,38(4):838−843(in Chinese) He Cunfu, Wang Zhi, Liu Xiucheng, et al. Magnetic property parameter identification of steel pole based on GA-PSO hybird algorithm[J]. Chinese Journal of Scientific Instrument,2017,38(4):838−843
[18] 杨赫然, 孙兴伟, 戚朋, 等. 基于改进BP神经网络的螺杆转子铣削表面粗糙度预测[J]. 电子测量与仪器学报,2022,36(10):189−196(in Chinese) Yang Heran, Sun Xingwei, Qi Peng, et al. Roughness prediction of spiral surface milling based on improved BP neural network[J]. Chinese Journal of Scientific Instrument,2022,36(10):189−196
[19] 赵柄锡, 冀大伟, 袁奇, 等. 采用时域与时频域联合特征空间的转子系统碰磨故障诊断[J]. 西安交通大学学报,2020,54(01):75−84(in Chinese) doi: 10.7652/xjtuxb202001010 Zhao Bingxi, Ji Dawei, Yuan Qi, et al. Rubbing fault diagnosis of rotor system based on combined feature space in time and time-frequency domains[J]. Xi’an Jiaotong University Xuebao,2020,54(01):75−84 doi: 10.7652/xjtuxb202001010