[1] |
林雪杨, 刘如铁, 熊 翔, 等. 石墨粒度及沥青粘结剂对铜−石墨电刷材料性能的影响[J]. 中国有色金属学报,2017,27(7):1411−1418(in Chinese)
Lin X Y, Liu R T, Xiong X, et al. Effects of graphite granularity and pitch binder on properties of copper-graphite brush[J]. The Chinese Journal of Nonferrous Metals,2017,27(7):1411−1418
|
[2] |
Wei H M, Zou J P, Gong Y R, et al. Effects of Ti2SnC on the mechanical properties and tribological properties of copper/graphite composites [J]. Ceramics International, 2022, https://doi.org/10.1016/ j.ceramint. 2022.08.250
|
[3] |
黄德彬, 李春胜. 金属材料手册[M]. 北京: 化学工业出版社, 2005(in Chinese)
Huang D B, Li C S. Handbook of metallic materials[M]. Beijing: Chemical Industry Press, 2005
|
[4] |
许尧. 高导热石墨/铜复合材料的制备及性能研究[D]. 华中科技大学, 2013(in Chinese)
Xu Y. Research on preparation and properties of graphite/copper composites with high thermal conductivity candidate[D]. Huazhong University of Science and Technology, 2013
|
[5] |
Lee J, Kim Y I, Kim S, et al. Highly thermoconductive copper-graphite flake composites controlled in the heat direction by electroless plating and spark plasma sintering[J]. Journal of Alloys and Compounds,2022,920:165894 doi: 10.1016/j.jallcom.2022.165894
|
[6] |
Liu B, Zhang D Q, Li X F, et al. Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites[J]. Journal of Alloys and Compounds,2018,766:382−390 doi: 10.1016/j.jallcom.2018.06.129
|
[7] |
Wang Z M, Tang Z M, Xu L, et al. Thermal properties and thermal cycling stability of graphite/copper composite fabricated by microwave sintering[J]. Journal of Materials Research and Technology,2022,20:1352−1363 doi: 10.1016/j.jmrt.2022.07.147
|
[8] |
何东浪, 方华婵, 李郁兴, 等. 短碳纤维增强铜复合材料的计算细观力学模型及力学性能[J]. 粉末冶金材料科学与工程,2022,27(04):382−388(in Chinese)
He D L, Fang H C, Li Y X, et al. Computational meso-mechanical model and mechanical property of short carbon fiber reinforced copper matrix composites[J]. Materials Science and Engineering of Powder Metallurgy,2022,27(04):382−388
|
[9] |
栗文浩, 吴少鹏, 蔡晓兰, 等. 铜基复合材料中增强相结构设计与性能研究进展[J]. 有色金属工程,2022,12(07):39−49(in Chinese) doi: 10.3969/j.issn.2095-1744.2022.07.06
Li W H, Wu S P, Cai X L, et al. Research progress on structural design and properties of reinforced phase in copper matrix composites[J]. Nonferrous Metals Engineering,2022,12(07):39−49 doi: 10.3969/j.issn.2095-1744.2022.07.06
|
[10] |
李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程,2019,47(1):11−17(in Chinese) doi: 10.11868/j.issn.1001-4381.2017.001545
Li X H, Yan S J, Hong Q H, et al. Influence of grapheme content on properties of Cu matrix composites[J]. Journal of Materials Engineering,2019,47(1):11−17 doi: 10.11868/j.issn.1001-4381.2017.001545
|
[11] |
Lian W Q, Mai Y J, Wang J, et al. Fabrication of graphene oxide-Ti3AlC2 synergistically reinforced copper matrix composites with enhanced tribological performance[J]. Ceramics International,2019,45(15):18592−18598 doi: 10.1016/j.ceramint.2019.06.082
|
[12] |
Chu K, Wang F, Wang X H, et al. Interface design of graphene/copper composites by matrix alloying with titanium[J]. Materials & Design,2018,144:290−303
|
[13] |
张桂飞, 周旭峰, 刘兆平, 等. 石墨烯增强铜基复合材料的挑战及其对策[J]. 稀有金属,2022,46(7):946−953(in Chinese)
Zhang G F, Zhou X F, Liu Z P, et al. Challenges and strategies for graphene reinforced copper matrix composites[J]. Chinese Journal of Rare Metals,2022,46(7):946−953
|
[14] |
López M, Corredor D, Camurri C, et al. Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical use[J]. Materials Characterization,2005,55(4−5):252−262 doi: 10.1016/j.matchar.2005.04.006
|
[15] |
Kang H. Microstructure and electrical conductivity of high volume Al2O3-reinforced copper matrix composites produced by plasma spray[J]. Surface and Coatings Technology,2005,190(2-3):448−452 doi: 10.1016/j.surfcoat.2004.02.002
|
[16] |
肖鹏, 姜许, 朱佳敏, 等. 树脂碳包覆石墨/铜复合材料组织和性能研究[J]. 稀有金属材料与工程,2019,48(10):3265−3274(in Chinese)
Xiao P, Jiang X, Zhu J M, et al. Microstructures and properties of resin carbon-coated graphite/copper composites[J]. Rare Metal Materials and Engineering,2019,48(10):3265−3274
|
[17] |
刘 滩, 方华婵, 李金伟, 等. 加压烧结树脂碳包覆石墨/铜复合材料的显微组织和性能[J]. 中国有色金属学报,2019,29(7):1446−1456(in Chinese)
Liu T, Fang H C, Li J W, et al. Microstructure and properties of pressure-sintered resin carbon-coated graphite/copper composites[J]. The Chinese Journal of Nonferrous Metals,2019,29(7):1446−1456
|
[18] |
秦笑, 王娟, 林高用, 等. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报,2020,34(Z1):380−384(in Chinese)
Qin X, Wang J, Lin G Y, et al. Microstructure, friction and wear properties of copper-coated graphite/copper composites[J]. Materials Reports,2020,34(Z1):380−384
|
[19] |
Liu B, Zhang D Q, Li X F, et al. The microstructures and properties of graphite flake / copper composites with high volume fractions of graphite flake[J]. New Carbon Materials,2020,35(1):58−65 doi: 10.1016/S1872-5805(20)60475-9
|
[20] |
Sadhukhan P, Subbarao R. Study of mechanical and tribological properties of hybrid copper metal matrix composite reinforced with graphite and SiC[J]. Materials Today:Proceedings,2021,39:1801−1806 doi: 10.1016/j.matpr.2020.08.677
|
[21] |
Zhu J M, Li J W, Liu T, et al. Differences in mechanical behaviors and characteristics between natural graphite/copper composites and carbon-coated graphite/copper composites[J]. Materials Characterization,2020,162:110195 doi: 10.1016/j.matchar.2020.110195
|
[22] |
Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear,2002,253(7−8):699−710 doi: 10.1016/S0043-1648(02)00038-8
|
[23] |
Ghouse M, Ramachandran E G. Antifiction properties of electrodeposited composites of graphite and molybdenum disulfide with copper[J]. Metal Finishing,1981,60:85−89
|
[24] |
张晓丹, 崔云涛, 马捷, 等. 石墨的铜包覆量对自润滑材料的性能影响[J]. 有色金属(冶炼部分), 2016, 1: 53−57(in Chinese)
Zhang X D, Cui Y T, Ma J, et al. Effect of coating content of copper coated graphite on property of self-lubricating materials[J]. Nonferrous Metals (Extractive Metallurgy), 2016, 1: 53−57
|
[25] |
Xu E Z, Huang J X, Li Y C, et al. Graphite cluster/copper-based powder metallurgy composite for pantograph slider with well-behaved mechanical and wear performance[J]. Powder Technology,2019,344:551−560 doi: 10.1016/j.powtec.2018.12.059
|
[26] |
张铭君, 刘培生, 宋 帅. 制备工艺参数对超大颗粒石墨/铜基复合材料结构及相对密度的影响[J]. 中国有色金属学报,2022,32(2):406−415(in Chinese)
Zhang M J, Liu P S, Song S. Effects of preparation parameters on microstructure and density of copper based composites with large particles of graphite[J]. The Chinese Journal of Nonferrous Metals,2022,32(2):406−415
|
[27] |
刘骞. 非连续石墨/铜复合材料的制备与热性能研究[D]. 北京科技大学, 2015(in Chinese)
Liu Q. Preparation and thermal properties of discontinuous graphite/copper composites[D]. University of Science and Technology Beijing, 2015
|
[28] |
Zhou S, Xu J, Yang Q H, et al. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers[J]. Carbon,2013,57:452−459 doi: 10.1016/j.carbon.2013.02.018
|
[29] |
许尧, 薛鹏举, 魏青松, 等. 热压烧结制备石墨/铜复合材料的热性能研究[J]. 热加工工艺,2013,42(12):111−114(in Chinese)
Xu Y, Xue P J, Wei Q S, et al. Thermal properties of graphite/copper composite prepared by hot-pressed sintering[J]. Hot Working Technology,2013,42(12):111−114
|
[30] |
邓书山. 石墨—铜(银)复合材料组分设计与性能研究[D]. 合肥工业大学, 2007 (in Chinese)
Deng S S. Component design and properties of graphite-copper (silver) composites[D]. Hefei University of Technology, 2007
|
[31] |
卢铃, 朱定一, 汪才良. 金属基/石墨固体自润滑材料的研究进展[J]. 材料导报,2007,21(2):38−42(in Chinese)
Lu L, Zhu D Y, Wang C L. Recent development of metal-matrix/graphite solid self-lubricating materials[J]. Materials Reports,2007,21(2):38−42
|