[1] Shoulders K R. Microelectronics using electron-beam-activated machining techniques[J]. Advances in Computers,1961,2:135−293
[2] Spindt C A. A thin-film field-emission cathode[J]. Journal of Applied Physics,1968,39(7):3504−3505 doi: 10.1063/1.1656810
[3] Spindt C A, Brodie I, Humphrey L, et al. Physical properties of thin-film field emission cathodes with molybdenum cones[J]. Journal of Applied Physics,1976,47(12):5248−5263 doi: 10.1063/1.322600
[4] Zhu W. Vacuum microelectronics[M]. New York:John Wiley & Sons, 2001:176−177
[5] Nagao M, Yoshida T, Kanemaru S, et al. Fabrication of a field emitter array with a built-in einzel lens[J]. Japanese Journal of Applied Physics,2009,48(6S):06FK02 doi: 10.1143/JJAP.48.06FK02
[6] Nagao M, Yoshida T, Nishi T, et al. A novel fabrication of Spindt-type field emitters with focusing electrodes[C]//Proceedings of the 25th International Vacuum Nanoelectronics Conference, Jeju:IEEE, 2012:1−2
[7] Li N N, Zheng B Q, Yan F, et al. High-density gate aperture arrays for Spindt cathode fabricated using nanosphere lithography[C]//Proceedings of the 25th IEEE International Vacuum Electronics Conference, Beijing:IEEE, 2015
[8] Li N N, Yan F, Pang S C, et al. Novel nanofabricated Mo field-emitter array for low-cost and large-area application[J]. IEEE Transactions on Electron Devices,2018,65(10):4369−4374 doi: 10.1109/TED.2018.2862409
[9] Li X H, Yang C F, Feng J J, et al. Effect of ageing process on performance of molybdenum field emission arrays[J]. Applied Surface Science,2005,251(1-4):210−214 doi: 10.1016/j.apsusc.2005.03.158
[10] 李兴辉, 冯进军, 白国栋, 等. 提高钼尖锥场致发射阵列阴极发射性能的研究[J]. 液晶与显示,2004,19(5):343−348 (in Chinese) Li X H, Feng J J, Bai G D, et al. Improvement of emission performance of molybdenum field emission arrays[J]. Chinese Journal of Liquid Crystals and Displays,2004,19(5):343−348
[11] 李含雁. 涂敷ZrC薄膜的Mo-Spindt场致发射阵列阴极的研究[D]. 北京:北京真空电子技术研究所, 2006 (in Chinese) Li H Y. Research on Mo Spindt field emission array cathode coated with ZrC thin film[D]. Beijing:Beijing Vacuum Electronics Research Institute, 2006
[12] Ding M Q, Gruen D M, Auciello O, et al. Field emission properties of ultrananocrystalline diamond coated Si microtip[C]//Proceedings of the Abstracts of the 8th IUMRS International Conference on Electronic Materials IUMRS-ICEM2002, Xi'an:Chinese Materials Research Society, 2002:PT03
[13] Chalamala B R, Wallace R M, Gnade B E. Surface conditioning of active molybdenum field emission cathode arrays with H2 and helium[J]. Journal of Vacuum Science & Technology B,1998,16(5):2855−2858
[14] Schwoebel P R, Spindt C A, Holland C E. High current, high current density field emitter array cathodes[J]. Journal of Vacuum Science & Technology B,2005,23(2):691−693
[15] Bhattacharya R, Karaulac N, Rughoobur G, et al. Ultraviolet light stimulated water desorption effect on emission performance of gated field emitter array[J]. Journal of Vacuum Science & Technology B,2021,39(3):033201
[16] Bhattacharya R, Shih P C, Palacios T, et al. Field emission characteristics of GaN arrays[C]//Proceedings of the 23rd International Vacuum Electronics Conference, Monterey:IEEE, 2022:142−143
[17] Mimura H, Neo Y, Nagao M, et al. Volcano-structured double-gated field emitter arrays; emission characteristics and applications[C]//Proceedings of the 24th International Vacuum Electronics Conference, Chengdu:IEEE, 2023:572−573
[18] Neo Y, Soda T, Takeda M, et al. Focusing characteristics of double-gated field-emitter arrays with a lower height of the focusing electrode[J]. Applied Physics Express,2008,1(5):053001
[19] Neo Y, Takeda M, Soda T, et al. Emission and focusing characteristics of volcano-structured double-gated field emitter arrays[J]. Journal of Vacuum Science & Technology B,2009,27(2):701−704
[20] Itoh J, Tohma Y, Morikawa K, et al. Fabrication of double-gated Si field emitter arrays for focused electron beam generation[J]. Journal of Vacuum Science & Technology B,1995,13(5):1968−1972
[21] Wu M, Huang Y, Huang Z J, et al. Gated Si-tips with integrated ion collector for reliable and stable field electron emission[C]//Proceedings of the International Vacuum Nanoelectronics Conference, 2019
[22] Nagao M, Yoshizawa S. Fabrication of Spindt-type double-gated field-emitters using photoresist lift-off layer[C]//Proceedings of the 27th International Vacuum Nanoelectronics Conference, Engelberg:IEEE, 2014:226−227
[23] Nagao M, Gotoh Y, Neo Y, et al. Beam profile measurement of volcano-structured double-gated Spindt-type filed emitter arrays[C]//Proceedings of the 28th International Vacuum Nanoelectronics Conference, Guangzhou:IEEE, 2015:190−191
[24] Nagao M, Murakami K, Khumpuang S, et al. Fabrication of volcano structured Spindt-type field emitter arrays using Minimal Fab system[C]//Proceedings of the 31st International Vacuum Nanoelectronics Conference, Kyoto:IEEE, 2018:1−2
[25] Kirk E, Tsujino S, Vogel T, et al. Fabrication of all-metal field emitter arrays with controlled apex sizes by molding[J]. Journal of Vacuum Science & Technology B,2009,27(4):1813−1820
[26] Helfenstein P, Jefimovs K, Kirk E, et al. Fabrication of metallic double-gate field emitter arrays and their electron beam collimation characteristics[J]. Journal of Applied Physics,2012,112(9):093307 doi: 10.1063/1.4764925
[27] Mustonen A, Guzenko V, Spreu C, et al. High-density metallic nano-emitter arrays and their field emission characteristics[J]. Nanotechnology,2014,25(8):085203 doi: 10.1088/0957-4484/25/8/085203
[28] Zhu N L, Xu K S, Song L, et al. Fabrication and characterization of bulk molybdenum field emission arrays[C]//Proceedings of the 18th International Conference on Solid-state Sensors, Actuators and Microsystems, Anchorage:IEEE, 2015:1168−1171
[29] 李兴辉, 白国栋, 李含雁, 等. Spindt阴极制作中剥离层的研究[J]. 真空科学与技术学报,2013,33(4):303−308 (in Chinese) Li X H, Bai G D, Li H Y, et al. Study of lift-off layers in Spindt cathode fabrication[J]. Chinese Journal of Vacuum Science and Technology,2013,33(4):303−308
[30] Li X H, Bai G D, Li H Y, et al. A potential failure reason for Spindt cathodes in high current applications[C]//Proceedings of the IEEE International Vacuum Electronics Conference, Monterey:IEEE, 2014:509−510
[31] 李兴辉, 白国栋, 李含雁, 等. Spindt阴极金属颗粒粘附失效分析[J]. 真空科学与技术学报,2015,35(4):418−423 (in Chinese) Li X H, Bai G D, Li H Y, et al. Molybdenum-particles contamination and failures of Spindt cathode[J]. Chinese Journal of Vacuum Science and Technology,2015,35(4):418−423
[32] Han P Y, Li X H, Jiang Q, et al. Solutions for short circuit failure of Spindt cathode[C]//Proceedings of the IET Ph. D Candidates Academic Seminar (China) on Vacuum Electronics, Beijing:IET, 2021:58−61
[33] Whaley D R, Duggal R, Armstrong C M, et al. 100 W operation of a cold cathode TWT[J]. IEEE Transactions on Electron Devices,2009,56(5):896−905 doi: 10.1109/TED.2009.2015614
[34] Solano I, Reichenbach B, Schwoebel P R, et al. Field desorption ion source development for neutron generators[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008,587(1):76−81
[35] Spindt C, Holland C E, Schwoebel P R, et al. 11.1:a reliable improved Spindt cathode design for high currents[C]//Proceedings of the IEEE International Vacuum Electronics Conference, Monterey:IEEE, 2010
[36] Spindt C. A brief history Vacuum Nanoelectronics, the IVNC, and the present status of the Spindt cathode[C]//Proceedings of the 25th International Vacuum Nanoelectronics Conference, Jeju:IEEE, 2012:1−2
[37] Holland C, Schwoebel P, Todd K, et al. High-speed photo-modulated Spindt cathode for FELs[C]//Proceedings of the 26th International Vacuum Nanoelectronics Conference, Roanoke:IEEE, 2013:1−2
[38] 姜琪, 韩攀阳, 杜婷, 等. 多绝缘层结构Spindt阴极设计及工艺实现[J]. 真空电子技术,2022(4):60−66 (in Chinese) Jiang Q, Han P Y, Du T, et al. Design and fabrication of an Spindt cathode with insulating multilayer structure[J]. Vacuum Electronics,2022(4):60−66
[39] Whaley D R, Gannon B M, Heinen V O, et al. Experimental demonstration of an emission-gated traveling-wave tube amplifier[J]. IEEE Transactions on Plasma Science,2002,30(3):998−1008 doi: 10.1109/TPS.2002.801527
[40] Whaley D R, Duggal R, Armstrong C M, et al. High average power field emitter cathode and testbed for X/Ku-band cold cathode TWT[C]//Proceedings of the 14th International Vacuum Electronics Conference, Paris:IEEE, 2013
[41] Whaley D R, Armstrong C M, Holland C E, et al. Cold cathode based microwave devices for current and future systems[C]//Proceedings of the 31st International Vacuum Nanoelectronics Conference, Kyoto:IEEE, 2018:1−2
[42] Holland C E, Whaley D R, Schwoebel P, et al. Development of a self focused Spindt cathode for millimeter-wave traveling wave tubes[C]//Proceedings of the 36th International Vacuum Nanoelectronics Conference, Cambridge:IEEE, 2023
[43] Lockwood N P, Tang W, Fairchild S B. Single walled nanotube fiber cathode emission property modification and evaluation[C]//Proceedings of the International Vacuum Electronics Conference 2012, Monterey:IEEE, 2012:25−26
[44] Guiset P, Combrie S, Antoni T, et al. Optically driven field emission array for THz amplifiers[C]//Proceedings of 2009 IEEE International Vacuum Electronics Conference, Rome:IEEE, 2009:325−326
[45] 李兴辉, 白国栋, 李含雁, 等. 场发射阴极及其应用的回顾与展望[J]. 真空电子技术,2015(2):50−63 (in Chinese) Li X H, Bai G D, Li H Y, et al. Review and prospect of field emission cathodes and the applications[J]. Vacuum Electronics,2015(2):50−63
[46] Garven M, Spark S N, Cross A W, et al. Gyrotron experiments employing a field emission array cathode[J]. Physical Review Letters,1996,77(11):2320−2323 doi: 10.1103/PhysRevLett.77.2320
[47] Bandy S G, Green M C, Spindt C A, et al. Application of gated field emitter arrays in microwave amplifier tubes[C]//Proceedings of the Eleventh International Vacuum Microelectronics Conference, Asheville:IEEE, 1998:132−133
[48] Schwoebel P R, Boone J M, Shao J. Studies of a prototype linear stationary x-ray source for tomosynthesis imaging[J]. Physics in Medicine and Biology,2014,59(10):2393−2413 doi: 10.1088/0031-9155/59/10/2393
[49] Jeong U, Kang G, Lee S, et al. Revolutionizing X-Ray imaging:Spindt field emitter tube with chromatic scan capability across wide voltage range (30−160KV)[C]//Proceedings of the 36th International Vacuum Nanoelectronics Conference, Cambridge:IEEE, 2023:198−200
[50] Honda Y, Nanba M, Miyakawa K, et al. Highly sensitive HARP image sensor with Spindt-type field emitter array[C]//Proceedings of the IEEE International Nanoelectronics Conference, Sapporo:IEEE, 2014:1−4
[51] Honda Y, Takiguchi Y, Egami N, et al. Triple-gated Spindt-type FEA for image sensor with HARP target[C]//Proceedings of the 24th International Vacuum Nanoelectronics Conference, Wuppertal:IEEE, 2011:11−12
[52] Honda Y, Nanba M, Miyakawa K, et al. Electrostatic-focusing Spindt-type FEA with improved electron-beam extraction efficiency for image sensor with HARP target[C]//Proceedings of the 27th International Vacuum Nanoelectronics Conference, Engelberg:IEEE, 2014:19-20
[53] Nagao M, Gotoh Y, Neo Y, et al. Beam profile measurement of volcano-structured double-gate Spindt-type field emitter arrays[J]. Journal of Vacuum Science & Technology B,2016,34(2):02G108
[54] Honda Y, Nanba M, Miyakawa K, et al. Electrostatic-focusing image sensor with volcano-structured Spindt-type field emitter array[J]. Journal of Vacuum Science & Technology B,2016,34(5):052201
[55] Hoang T M, Chung S K, Le T, et al. Integrated physics package of micromercury trapped ion clock with 10−14-level frequency stability[J]. Applied Physics Letters,2021,119(4):044001 doi: 10.1063/5.0049734
[56] Holland C E, Prestage J D, Hoang T M, et al. Development of a micro mercury trapped ion clock prototype employing a Spindt cathode ionization source[C]//Proceedings of the 36th International Vacuum Nanoelectronics Conference, Cambridge:IEEE, 2023