[1] Huang Z, Han B, Le Y. Multidisciplinary design strategies for turbomolecular pumps with ultrahigh vacuum performance[J]. IEEE Transactions on Industrial Electronics,2019,66(12):9549−9558 doi: 10.1109/TIE.2019.2891440
[2] Shams M, Sheykhzadeh H, Taghavi M. Mathematical simulation of free molecular flow in a three-dimensional turbomolecular pump with nonparallel blades[J]. Journal of Dispersion Science and Technology, 2010:299-306
[3] Sengil N. Performance increase in turbomolecular pumps with curved type blades[J]. Vacuum,2012,86(11):1764−1769 doi: 10.1016/j.vacuum.2011.12.018
[4] Sawada T, Murakami K. The axial flow molecular pump (I)[J]. Shinku,1971,14(2):33−41 doi: 10.3131/jvsj.14.33
[5] Sawada T, Murakami K. The axial flow molecular pump (2)[J]. Shinku,1971,14(3):75−82 doi: 10.3131/jvsj.14.75
[6] Li Y, Chen X, Guo W, et al. Accurate simulation of turbomolecular pumps with modified algorithm by 3D direct simulation Monte Carlo method[J]. Vacuum,2014,109:354−359 doi: 10.1016/j.vacuum.2014.03.023
[7] Sun K, Zhang S W, Han F, et al. A new modeling method to reveal pumping mechanism of turbomolecular pump[J]. Journal of Applied Fluid Mechanics,2020,14(1):165−173
[8] Schneider T N, Katsimichas S, De Oliveira C R E, et al. Empirical and numerical calculations in two dimensions for predicting the performance of a single stage turbomolecular pump[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1998,16(1):175−180
[9] Tu J Y, Yang N H. Theoretical studies of the modern turbomolecular pump[J]. Vacuum,1987,37(11-12):831−837 doi: 10.1016/0042-207X(87)90183-7
[10] Katsimichas S, Goddard A J H, Lewington R, et al. General geometry calculations of one-stage molecular flow transmission probabilities for turbomolecular pumps[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1995,13(6):2954−2961.
[11] Wang M, Li Z. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method[J]. International Journal of Heat and Fluid Flow,2004,25(6):975−985 doi: 10.1016/j.ijheatfluidflow.2004.02.024
[12] 李博, 马兆俊, 王晓冬, 等. 基于DSMC方法的涡轮分子泵跨流态抽气性能研究[J]. 东北大学学报(自然科学版),2020,41(11):1623−1627+1632 (in Chinese) Li B, Ma Z J, Wang X D, et al. On the cross flow regime pumping performance of turbomolecular pumps based on DSMC method[J]. Journal of Northeastern University Natural Science,2020,41(11):1623−1627+1632
[13] 张鹏飞, 王晓冬, 张磊, 等. 复合分子泵抽气特性算法改进与结构优化[J]. 真空,2018,55(3):1−5 (in Chinese) Zhang P F, Wang X D, Zhang L, et al. Algorithm improvement for pumping characteristics and structure optimization of compound molecular pump[J]. Vacuum,2018,55(3):1−5
[14] 匡永麟, 王晓冬, 黄海龙, 等. 涡轮分子泵叶列抽气性能的计算方法改进[J]. 真空科学与技术学报,2022,42(01):26−30 (in Chinese) Kuang Y L, Wang X D, Zhang G Y, et al. Pumping characteristics of curved blades of turbomolecular pump[J]. Chinese Journal Vacuum Science and Technology,2022,42(01):26−30
[15] 匡永麟, 王晓冬, 张国玉, 等. 涡轮分子泵曲面叶片抽气特性研究[J]. 真空科学与技术学报,2022,42(10):731−736 (in Chinese) Kuang Y L, Wang X D, Huang H L, et al. Improvement of the calculation method of the pumping performance of the turbomolecular pump blade row[J]. Chinese Journal Vacuum Science and Technology,2022,42(10):731−736
[16] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521(7553):436−444 doi: 10.1038/nature14539
[17] Kruger C H. The axial-flow compressor in the free-molecule range[D]. Massachusetts Institute of Technology, 1960
[18] 匡永麟. 涡轮分子泵曲面叶片的抽气特性研究[D]. 沈阳:东北大学, 2023 (in Chinese) Kuang Y L. Study on the pumping characteristics of curved surface blades of turbomolecular pump[D]. Shenyang:Northeastern University, 2023
[19] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 冶金工业出版社, 2021 (in Chinese) Wang X D, Ba D C, Zhang S W, et al. Vacuum technology[M]. Metallurgical Industry Press, 2021
[20] 王晓冬, 张磊, 巴德纯, 等. 涡轮分子泵抽气性能计算的误差分析[J]. 真空科学与技术学报,2016,36(4):432−435 (in Chinese) Wang X D, Zhang L, Ba D C, et al. Calculations of pumping behavior of turbo molecular pump and error analysis[J]. Chinese Journal Vacuum Science and Technology,2016,36(4):432−435