[1] Deng Li, Ye Tao, Li Gang, et al. 3-D Monte Carlo neutron-photon transport code JMCT and its algorithms[C]//Proceedings of International Conference on Physics of Reactors. 2014.
[2] Deng Li, Li Gang, Zhang Baoyin, et al. JMCT V-2.0 Monte Carlo code with integrated nuclear system feedback for simulation of BEAVRS model[C]//PHYSOR 2018. 2018.
[3] Deng Li, Li Gang, Zhang Baoyin, et al. A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0[J]. Nuclear Science and Techniques, 2022, 33: 108. doi: 10.1007/s41365-022-01092-0
[4] Zhang Baoyin, Li Gang, Deng Li, et al. JCOGIN: a parallel programming infrastructure for Monte Carlo particle transport[C]//PHYSOR 2014—the Role of Reactor Physics Toward A Sustainable Future. 2014.
[5] Mo Zeyao, Zhang Aiqing, Cao Xiaolin, et al. JASMIN: a parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4(4): 480-488. doi: 10.1007/s11704-010-0120-5
[6] Ma Yan, Fu Yuanguang, Qin Guiming. The design of JLAMT: an aided tool for large-scale complex physical modeling[C]//Proceedings of the 40th Anniversary. 2019: 877-883.
[7] Cao Yi, Mo Zeyao, Xiao Li, et al. Efficient visualization of high-resolution virtual nuclear reactor[J]. Journal of Visualization, 2018, 21(5): 857-871. doi: 10.1007/s12650-018-0487-1
[8] Li Rui, Zhang Lingyu, Shi Dunfu, et al. Criticality search of soluble boron iteration in MC code JMCT[J]. Energy Procedia, 2017, 127: 329-334. doi: 10.1016/j.egypro.2017.08.118
[9] 邓力, 李瑞, 王鑫, 等. 特征γ射线谱分析的蒙特卡罗模拟技术[J]. 物理学报, 2020, 69:112801 doi: 10.7498/aps.69.20200279 Deng Li, Li Rui, Wang Xin, et al. Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis[J]. Acta Physica Sinica, 2020, 69: 112801 doi: 10.7498/aps.69.20200279
[10] Deng Li, Hu Zehua, Li Rui, et al. The coupled neutron transport calculation of Monte Carlo multi-group and continuous cross section[J]. Annals of Nuclear Energy, 2019, 127: 433-436. doi: 10.1016/j.anucene.2018.12.032
[11] Li Gang, Zhang Baoyin, Deng Li. Domain decomposition of combinatorial geometry Monte Carlo transport code JMCT[J]. Transactions of the American Nuclear Society, 2013, 109: 1425-1427.
[12] Shangguan Danhua, Li Gang, Deng Li, et al. Tallying scheme of JMCT - a general purpose Monte Carlo particle transport code[J]. Transactions of the American Nuclear Society, 2013, 109: 1428-1430.
[13] 李刚, 邓力. BNCT优化网格设计及相关算法研究[J]. 高能物理与核物理, 2006, 30(2):171-177 doi: 10.3321/j.issn:0254-3052.2006.02.018 Li Gang, Deng Li. Optimized voxel model construction and simulation research in BNCT[J]. High Energy Physics and Nuclear Physics, 2006, 30(2): 171-177 doi: 10.3321/j.issn:0254-3052.2006.02.018
[14] Zheng Zheng, Wang Mengqi, Li Hui, et al. Application of a 3D Discrete Ordinates-Monte Carlo coupling method to deep-penetration shielding calculation[J]. Nuclear Engineering and Design, 2018, 326: 87-96. doi: 10.1016/j.nucengdes.2017.11.005
[15] 王鑫, 邓力, 李刚, 等. JCOGIN粒子追踪算法优化[J]. 原子能科学技术, 2018, 52(8):1530-1536 doi: 10.7538/yzk.2017.youxian.0778 Wang Xin, Deng Li, Li Gang, et al. Optimization for particle tracking algorithm of JCOGIN[J]. Atomic Energy Science and Technology, 2018, 52(8): 1530-1536 doi: 10.7538/yzk.2017.youxian.0778
[16] Berger M J. Monte Carlo calculation of the penetration and diffusion of fast charged particles[R]. Methods in Computational Physics, 1963: 135.
[17] Sternheimer R M, Seltzer S M, Berger M J. Density effect for the ionization loss of charged particles in various substances[J]. Physical Review B, 1982, 26(11): 6067-6076. doi: 10.1103/PhysRevB.26.6067
[18] Seltzer S M, Berger M J. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1985, 12(1): 95-134. doi: 10.1016/0168-583X(85)90707-4
[19] Riley M E, MacCallum C J, Biggs F. Theoretical electron-atom elastic scattering cross sections: selected elements, 1 keV to 256 keV[J]. Atomic Data and Nuclear Data Tables, 1975, 15(5): 443-476. doi: 10.1016/0092-640X(75)90012-1
[20] Kolbenstvedt H. Simple theory for K-ionization by relativistic electrons[J]. Journal of Applied Physics, 1967, 38(12): 4785-4787. doi: 10.1063/1.1709220
[21] Berger M J, Seltzer S M. Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets[J]. Physical Review C, 1970, 2(2): 621-631. doi: 10.1103/PhysRevC.2.621
[22] Grady III H H. Quick-start guide to low-energy photon/electron transport in MCNP6[R]. Los Alamos: Los Alamos National Laboratory, 2013.
[23] Hughes H G. Enhanced electron-photon transport in MCNP6[C]//Joint International Conference on Supercomputing in Nuclear Applications. 2013.
[24] Goorley J T, James M R, Booth T E, et al. Initial MCNP6 release overview - MCNP6 beta 3[R]. LA-UR-12-26631, Los Alamos: Los Alamos National Laboratory, 2012.
[25] NEA. ICSBEP, SINBAD and IRPhEP technical review group meetings[R]. 2019.
[26] Chadwick M B, Obložinský P, Herman M, et al. ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107(12): 2931-3060. doi: 10.1016/j.nds.2006.11.001