[1] |
Brockwell T G, Meech K J, Pickens K, et al. The mass spectrometer for planetary exploration (MASPEX)[C]//2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 1−17
|
[2] |
Dekoulis G. Space flight[M]. IntechOpen, 2018
|
[3] |
Mozetič M, Vesel A, Primc G, et al. Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology[J]. Thin Solid Films,2018,660:120−160 doi: 10.1016/j.tsf.2018.05.046
|
[4] |
Palmberg P W. Ultrahigh vacuum and surface science[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1994,12(4):946−952
|
[5] |
Ellefson R E. Methods for in situ QMS calibration for partial pressure and composition analysis[J]. Vacuum,2014,101:423−432
|
[6] |
Joyce B A. Molecular beam epitaxy[J]. Reports on Progress in Physics,1985,48(12):1637−1697
|
[7] |
Kibbel H, Kasper E. Industrial aspects of silicon molecular beam epitaxy[J]. Vacuum,1990,41(4-6):929−932 doi: 10.1016/0042-207X(90)93825-4
|
[8] |
Te Sligte E, Koster N, Molkenboer F, et al. EBL2: high power EUV exposure facility[C]//Proceedings of SPIE 9985, Photomask Technology 2016. San Jose: SPIE, 2016: 259−266
|
[9] |
张苏钊, 孙雯君, 董猛, 等. 基于磁光阱中6Li冷原子的真空度测量[J]. 物理学报,2022,71(9):094204 (in Chinese) doi: 10.7498/aps.71.20212204
Zhang S Z, Sun W J, Dong M, et al. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap[J]. Acta Physica Sinica,2022,71(9):094204 doi: 10.7498/aps.71.20212204
|
[10] |
Scherschligt J, Fedchak J A, Barker D S, et al. Development of a new UHV/XHV pressure standard (cold atom vacuum standard)[J]. Metrologia,2017,54(6):S125−S132 doi: 10.1088/1681-7575/aa8a7b
|
[11] |
Schwinger J, Deraad Jr L L, Milton K, et al. Classical electrodynamics[M]. Boca Raton: CRC Press, 2019
|
[12] |
Temple G. Static and dynamic electricity[J]. Nature,1940,146(3701):446
|
[13] |
Pérez-Ríos J, Sanz A S. How does a magnetic trap work?[J]. American Journal of Physics,2013,81(11):836−843 doi: 10.1119/1.4819167
|
[14] |
Earnshaw S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether[J]. Transactions of the Cambridge Philosophical Society,1848,7:97−112
|
[15] |
Wing W H. On neutral particle trapping in quasistatic electromagnetic fields[J]. Progress in Quantum Electronics,1984,8(3-4):181−199 doi: 10.1016/0079-6727(84)90012-0
|
[16] |
Shen P R, Madison K W, Booth J L. Realization of a universal quantum pressure standard[J]. Metrologia,2020,57(2):025015 doi: 10.1088/1681-7575/ab7170
|
[17] |
Gensemer S D, Sanchez-Villicana V, Tan K Y N, et al. Trap-loss collisions of 85Rb and 87Rb: dependence on trap parameters[J]. Physical Review A,1997,56(5):4055−4063
|
[18] |
Prentiss M, Cable A, Bjorkholm J E, et al. Atomic-density-dependent losses in an optical trap[J]. Optics Letters,1988,13(6):452−454 doi: 10.1364/OL.13.000452
|
[19] |
Steane A M, Chowdhury M, Foot C J. Radiation force in the magneto-optical trap[J]. Journal of the Optical Society of America B,1992,9(12):2142−2158
|
[20] |
Van Dongen J, Zhu C, Clement D, et al. Trap-depth determination from residual gas collisions[J]. Physical Review A,2011,84(2):022708 doi: 10.1103/PhysRevA.84.022708
|
[21] |
Beijerinck H C W. Rigorous calculation of heating in alkali-metal traps by background gas collisions[J]. Physical Review A,2000,61(3):033606 doi: 10.1103/PhysRevA.61.033606
|
[22] |
Beijerinck H C W. Heating rates in collisionally opaque alkali-metal atom traps: role of secondary collisions[J]. Physical Review A,2000,62(6):063614
|
[23] |
Brink D M, Sukumar C V. Majorana spin-flip transitions in a magnetic trap[J]. Physical Review A,2006,74(3):035401
|
[24] |
Davis K B, Mewes M O, Joffe M A, et al. Evaporative cooling of sodium atoms[J]. Physical Review Letters,1995,74(26):5202−5205 doi: 10.1103/PhysRevLett.74.5202
|
[25] |
Majorana E. Atomi orientati in campo magnetico variabile[J]. Il Nuovo Cimento (1924-1942),1932,9(2):43−50 doi: 10.1007/BF02960953
|
[26] |
Maruyama R. Optical trapping of ytterbium atoms[D]. Washington: University of Washington, 2003
|
[27] |
Kozuma M, Deng L, Hagley E W, et al. Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction[J]. Physical Review Letters,1999,82(5):871−875
|
[28] |
Petrich W, Anderson M H, Ensher J R, et al. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms[J]. Physical Review Letters,1995,74(17):3352−3355
|
[29] |
Rolston S L. Magnetic trapping, evaporative cooling, and Bose Einstein Condensation[J]. AIP Conference Proceedings,1999,464(1):91−110
|
[30] |
Bergeman T, Erez G, Metcalf H J. Magnetostatic trapping fields for neutral atoms[J]. Physical Review A,1987,35(4):1535−1546 doi: 10.1103/PhysRevA.35.1535
|
[31] |
Ketterle W, Durfee D S, Stamper-Kurn D M. Making, probing and understanding Bose-Einstein condensates[M]. arXiv: cond-mat/9904034, 1999
|
[32] |
Ketterle W, Van Druten N J. Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions[J]. Physical Review A,1996,54(1):656−660 doi: 10.1103/PhysRevA.54.656
|
[33] |
Mewes M O, Andrews M R, Van Druten N J, et al. Bose-Einstein condensation in a tightly confining dc magnetic trap[J]. Physical Review Letters,1996,77(3):416−419
|
[34] |
Thomas N R, Wilson A C, Foot C J. Double-well magnetic trap for Bose-Einstein condensates[J]. Physical Review A,2002,65(6):063406 doi: 10.1103/PhysRevA.65.063406
|
[35] |
Sukumar C V, Brink D M. Spin-flip transitions in a magnetic trap[J]. Physical Review A,1997,56(3):2451−2454
|
[36] |
Courteille P W, Muniz S R, Magalhães K, et al. Magnetic field tomography[J]. The European Physical Journal D- Atomic, Molecular, Optical and Plasma Physics,2001,15(2):173−180
|
[37] |
Ketterle W, Van Druten N J. Evaporative cooling of trapped atoms[J]. Advances in Atomic, Molecular, and Optical Physics,1996,37:181−236
|
[38] |
Makrides C, Barker D S, Fedchak J A, et al. Elastic rate coefficients for Li+ H2 collisions in the calibration of a cold-atom vacuum standard[J]. Physical Review A,2019,99(4):042704 doi: 10.1103/PhysRevA.99.042704
|
[39] |
Scherschligt J, Fedchak J A, Ahmed Z, et al. Review article: quantum-based vacuum metrology at the National Institute of Standards and Technology[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(4): 040801
|
[40] |
Kłos J, Tiesinga E. Elastic and glancing-angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room-temperature noble gases, H2, and N2[J]. The Journal of Chemical Physics,2023,158(1):014308
|
[41] |
McCulloh K E, Tilford C R, Ehrlich C D, et al. Low‐range flowmeters for use with vacuum and leak standards[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1987,5(3):376−381
|
[42] |
Partridge H, Stallcop J R, Levin E. Potential energy curves and transport properties for the interaction of He with other ground-state atoms[J]. The Journal of Chemical Physics,2001,115(14):6471−6488 doi: 10.1063/1.1385372
|
[43] |
Ury G B, Wharton L. Absolute total scattering cross sections of 7Li–Ar[J]. The Journal of Chemical Physics,1972,56(12):5832−5837 doi: 10.1063/1.1677124
|
[44] |
Berg R F, Fedchak J A. NIST calibration services for spinning rotor gauge calibrations[R]. NIST, 2015: 93
|
[45] |
Siegel J L, Barker D S, Fedchak J A, et al. A Bitter-type electromagnet for complex atomic trapping and manipulation[J]. Review of Scientific Instruments,2021,92(3):033201 doi: 10.1063/5.0026812
|
[46] |
Long Y, Xiong F, Gaire V, et al. All-optical production of Li6 molecular Bose-Einstein condensates in excited hyperfine levels[J]. Physical Review A,2018,98(4):043626
|
[47] |
Luan T, Zhou T W, Chen X Z, et al. A modified Bitter-type electromagnet and control system for cold atom experiments[J]. Review of Scientific Instruments,2014,85(2):024701 doi: 10.1063/1.4864051
|
[48] |
Sabulsky D O, Parker C V, Gemelke N D, et al. Efficient continuous-duty Bitter-type electromagnets for cold atom experiments[J]. Review of Scientific Instruments,2013,84(10):104706 doi: 10.1063/1.4826498
|
[49] |
McKay Parry N, Baker M, Neely T, et al. Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics[J]. Review of Scientific Instruments,2014,85(8):086103 doi: 10.1063/1.4892375
|
[50] |
Ricci L, Martini L M, Franchi M, et al. A current-carrying coil design with improved liquid cooling arrangement[J]. Review of Scientific Instruments,2013,84(6):065115 doi: 10.1063/1.4811666
|
[51] |
Roux K, Cilenti B, Helson V, et al. Compact bulk-machined electromagnets for quantum gas experiments[J]. SciPost Physics,2019,6(4):048 doi: 10.21468/SciPostPhys.6.4.048
|
[52] |
Davis K B, Mewes M O, Andrews M R, et al. Bose-einstein condensation in a gas of sodium atoms[J]. Physical Review Letters,1995,75(22):3969−3973
|
[53] |
Ensher J R. The first experiments with Bose-einstein condensation of 87Rb[D]. Colorado: University of Colorado, 1999
|
[54] |
Herold C D. Ultracold mixtures of rubidium and ytterbium for open quantum system engineering[D]. College Park: University of Maryland, 2014
|
[55] |
Kastler A. Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique[J]. Journal de Physique et Le Radium,1950,11(6):255−265 doi: 10.1051/jphysrad:01950001106025500
|
[56] |
Barker D S, Acharya B P, Fedchak J A, et al. Precise quantum measurement of vacuum with cold atoms[J]. Review of Scientific Instruments,2022,93(12):121101 doi: 10.1063/5.0120500
|
[57] |
Eckel S, Barker D S, Fedchak J A, et al. Challenges to miniaturizing cold atom technology for deployable vacuum metrology[J]. Metrologia,2018,55(5):S182−S193 doi: 10.1088/1681-7575/aadbe4
|
[58] |
Sitaram A, Elgee P K, Campbell G K, et al. Confinement of an alkaline-earth element in a grating magneto-optical trap[J]. Review of Scientific Instruments,2020,91(10):103202
|
[59] |
McGilligan J P, Griffin P F, Riis E, et al. Diffraction-grating characterization for cold-atom experiments[J]. Journal of the Optical Society of America B,2016,33(6):1271−1277 doi: 10.1364/JOSAB.33.001271
|
[60] |
Barker D S, Norrgard E B, Klimov N N, et al. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating[J]. Physical Review Applied,2019,11(6):064023 doi: 10.1103/PhysRevApplied.11.064023
|
[61] |
Nshii C C, Vangeleyn M, Cotter J P, et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies[J]. Nature Nanotechnology,2013,8(5):321−324
|
[62] |
Cotter J P, McGilligan J P, Griffin P F, et al. Design and fabrication of diffractive atom chips for laser cooling and trapping[J]. Applied Physics B,2016,122(6):172 doi: 10.1007/s00340-016-6415-y
|
[63] |
Haw M, Evetts N, Gunton W, et al. Magneto-optical trap loading rate dependence on trap depth and vapor density[J]. Journal of the Optical Society of America B,2012,29(3):475−483 doi: 10.1364/JOSAB.29.000475
|
[64] |
Arpornthip T, Sackett C A, Hughes K J. Vacuum-pressure measurement using a magneto-optical trap[J]. Physical Review A,2012,85(3):033420 doi: 10.1103/PhysRevA.85.033420
|
[65] |
Ehinger L H, Acharya B P, Barker D S, et al. Comparison of two multiplexed portable cold-atom vacuum standards[J]. AVS Quantum Science,2022,4(3):034403
|
[66] |
Barker D S, Klimov N N, Tiesinga E, et al. Progress towards comparison of quantum and classical vacuum standards[J]. Measurement: Sensors,2021,18:100229 doi: 10.1016/j.measen.2021.100229
|
[67] |
Fagnan D E, Wang J C, Zhu C C, et al. Observation of quantum diffractive collisions using shallow atomic traps[J]. Physical Review A,2009,80(2):022712 doi: 10.1103/PhysRevA.80.022712
|
[68] |
Ladouceur K, Klappauf B G, Van Dongen J, et al. Compact laser cooling apparatus for simultaneous cooling of lithium and rubidium[J]. Journal of the Optical Society of America B,2009,26(2):210−217 doi: 10.1364/JOSAB.26.000210
|
[69] |
Booth J L, Fagnan D E, Klappauf B G, et al. Method and device for accurately measuring the incident flux of ambient particles in a high or ultra-high vacuum environment: 8803072[P]. 2014
|
[70] |
Bennett J R J, Hughes S, Elsey R J, et al. Outgassing from stainless steel and the effects of the gauges[J]. Vacuum,2004,73(2):149−153
|
[71] |
Hong S S, Shin Y H, Arakawa I. Investigation of gas species in a stainless steel ultrahigh vacuum chamber with hot cathode ionization gauges[J]. Measurement Science and Technology,2004,15(2):359−364 doi: 10.1088/0957-0233/15/2/007
|
[72] |
Booth J L, Shen P R, Krems R V, et al. Universality of quantum diffractive collisions and the quantum pressure standard[J]. New Journal of Physics,2019,21(10):102001 doi: 10.1088/1367-2630/ab452a
|
[73] |
Derevianko A, Porsev S G, Babb J F. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali–metal, alkaline–earth, and noble gas atoms[J]. Atomic Data and Nuclear Data Tables,2010,96(3):323−331 doi: 10.1016/j.adt.2009.12.002
|
[74] |
Hoffmann D, Bali S, Walker T. Trap-depth measurements using ultracold collisions[J]. Physical Review A,1996,54(2):R1030
|
[75] |
Sun W, Wu X, Cheng Y, et al. Cold atom technology applied to ultra-high vacuum (UHV) measurements[J]. Vacuum,2024,222:113079
|