[1] Park J, Henins I, Herrmann H W, et al. Discharge phenomena of an atmospheric pressure radio frequency capacitive plasma source[J]. Journal of Applied Physics, 2001, 89(1): 20−28 doi: 10.1063/1.1323753
[2] Chabert P, Raimbault J L, Rax J M, et al. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge[J]. Physics of Plasmas, 2004, 11(5): 1775−1785
[3] Chabert P, Raimbault J L, Levif P, et al. Inductive heating and E to H transitions in high frequency capacitive discharges[J]. Plasma Sources Science and Technology, 2006, 15(2): S130−S136 doi: 10.1088/0963-0252/15/2/S15
[4] Sharma S, Sirse N, Sen A, et al. Electric field filamentation and higher harmonic generation in a very high frequency capacitive discharges[J]. Journal of Physics D: Applied Physics, 2019, 52(36): 365201 doi: 10.1088/1361-6463/ab2959
[5] Chatain A, Miguel J R, Vettier L, et al. N2-H2 capacitively coupled radio-frequency discharges at low pressure. Part I. Experimental results: effect of the H2 amount on electrons, positive ions and ammonia formation[J]. Plasma Sources Science and Technology, 2020, 29(8): 085019 doi: 10.1088/1361-6595/ab9b1a
[6] Grari M, Zoheir C A, Yousfi Y, et al. Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor[J]. Chinese Physics B, 2021, 30(5): 055205 doi: 10.1088/1674-1056/abd2a4
[7] Wen D Q, Zhang Y R, Lieberman M A, et al. Ion energy and angular distribution in biased inductively coupled Ar/O2 discharges by using a hybrid model[J]. Plasma Processes and Polymers, 2017, 14(4-5): 1600100.1−1600100.9
[8] Jin Y, Ren C S, Yang L, et al. Comparative study of the surface cleaning for Ar-/He-based plasma jets at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 1−1 doi: 10.1109/TPS.2015.2469875
[9] Li S Z, Huang W T, Zhang J, et al. Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure[J]. Applied Physics Letters, 2009, 94(11): 241501
[10] Pan J, Tan Z, Liu Y, et al. Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture[J]. Physics of Plasmas, 2015, 18(9): 080901
[11] Baeva M, Stankov M, Trautvetter T, et al. The effect of oxygen admixture on the properties of microwave generated plasma in Ar/O2: a modelling study[J]. Journal of Physics D: Applied Physics, 2021, 54(35): 355205 doi: 10.1088/1361-6463/ac08cc
[12] Ni T L, Ke B, Zhu X D, et al. Probe diagnostics and numerical simulations of a low pressure argon slender plasma excited by a low frequency discharge[J]. Plasma Sources Science and Technology, 2008, 17(4): 045006 doi: 10.1088/0963-0252/17/4/045006
[13] 刘文静, 刘相梅. 大气压双频容性耦合Ar/O2等离子体特性研究[J]. 真空科学与技术学报, 2023, 43(12): 1081−1089 (in Chinese) Liu W J, Liu X M. Characteristics of dual-frequency capacitively coupled Ar/O2 plasma at atmospheric pressure[J]. Journal of Vacuum Science and Technology, 2023, 43(12): 1081−1089
[14] Sanchette F, El Garah M, Achache S, et al. DLC-based coatings obtained by low-frequency plasma-enhanced chemical vapor deposition (LFPECVD) in cyclohexane, principle and examples[J]. Coatings, 2021, 11(10): 1225 doi: 10.3390/coatings11101225
[15] Fynes-Clinton D, Nyamupangedengu C. Partial discharge characterization of cross-linked polyethylene medium voltage power cable termination defectsat very low frequency (0.1 Hz) and power frequency test voltages[J]. IEEE Electrical Insulation Magazine, 2016, 32(4): 15−23
[16] Roy N C, Hasan M M, Talukder M R, et al. Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat[J]. Plasma Chemistry and Plasma Processing, 2018, 38: 13−28 doi: 10.1007/s11090-017-9855-1
[17] 邵明绪. 低频放电等离子体静电探针诊断方法[D]. 西安电子科技大学, 2017 (in Chinese) Shao M X. Electrostatic probe diagnostic method for low-frequency discharge plasma[D]. Xidian University, 2017
[18] Ling Y M. Probe diagnosis of electron temperature and electron energy distribution in low-pressure dielectric barrier discharge[J]. Physics of Plasmas, 2005, 12(11): 113504 doi: 10.1063/1.2128512
[19] Jafari R, Tatoulian M, Morscheidt W, et al. Stable plasma polymerized acrylic acid coating deposited on polyethylene (PE) films in a low frequency discharge (70 kHz)[J]. Reactive and Functional Polymers, 2006, 66(12): 1757−1765 doi: 10.1016/j.reactfunctpolym.2006.08.006
[20] Liu X M, Song Y H, Wang Y N. Driving frequency effects on the mode transition in capacitively coupled argon discharges[J]. Chinese Physics B, 2011, 20(6): 323−328
[21] Lau Y T, Chin O H, Lee H C, et al. Plasma surface treatment of polystyrene in a low power low frequency argon glow discharge[J]. Applied Surface Science, 2022, 578: 151963 doi: 10.1016/j.apsusc.2021.151963
[22] Conti S, Porshnev P I, Fridman A, et al. Experimental and numerical investigation of a capacitively coupled low-radio frequency nitrogen plasma[J]. Experimental Thermal and Fluid Science, 2001, 24(3-4): 79−91 doi: 10.1016/S0894-1777(01)00040-1
[23] Truong H T, Uesugi Y, Nguyen X B. Mechanisms of low-frequency dielectric barrier discharge (DBD) plasma driven by unipolar pulses and bipolar pulses[J]. AIP Advances, 2021, 11(2): 025022 doi: 10.1063/5.0033846
[24] Liu G H, Wang X Y, Liu Y X, et al. Effects of secondary electron emission on plasma density and electron excitation dynamics in dual-frequency asymmetric capacitively coupled argon plasmas[J] Plasma Sources Science Technology, 2018, 27(6): 064004
[25] Liu G H, Liu Y X, Wen D Q, and Wang Y N. Heating mode transition in capacitively coupled CF4 discharges: comparison of experiments with simulations[J]. Plasma Sources Science and Technology, 2015, 24(3): 034006 doi: 10.1088/0963-0252/24/3/034006
[26] 潘光胜, 谭震宇, 王晓龙, 等. 高氧浓度下大气压Ar/O2脉冲介质阻挡放电频率特性数值研究[J]. 电工技术学报, 2017, 32(20): 71−81 (in Chinese) Pan G S, Tan Z Y, Wang X L, et al. Numerical study on frequency Characteristics of Ar/O2 pulse dielectric barrier discharge at atmospheric pressure under high oxygen concentration[J]. Electrotechnical journal, 2017, 32(20): 71−81
[27] Liu G H, Liu Y X, Bai L S, et al. Experimental investigation of mode transitions in asymmetric capacitively coupled radio-frequency Ne and CF4 plasmas[J]. Physics of Plasmas, 2018, 25(2): 02355
[28] Schulze J, Derzsi A, Dittmann K, et al. Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas[J]. Physical review letters, 2011, 107(27): 275001 doi: 10.1103/PhysRevLett.107.275001