[1] |
YANG Y, XIONG X M, CHEN J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. Journal of Magnesium and Alloys, 2021, 9(3): 705–747. doi: 10.1016/j.jma.2021.04.001
|
[2] |
SONG J F, CHEN J, XIONG X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. Journal of Magnesium and Alloys, 2022, 10(4): 863–898. doi: 10.1016/j.jma.2022.04.001
|
[3] |
YANG Y, XIONG X M, CHEN J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. Journal of Magnesium and Alloys, 2023, 11(8): 2611–2654. doi: 10.1016/j.jma.2023.07.011
|
[4] |
ZHU Y P, GUO X R, LEI Y J, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries [J]. Energy & Environmental Science, 2022, 15(3): 1282–1292.
|
[5] |
DIERINGA H, STJOHN D, PÉREZ PRADO M T, et al. Editorial: latest developments in the field of magnesium alloys and their applications [J]. Frontiers in Materials, 2021, 8: 726297. doi: 10.3389/fmats.2021.726297
|
[6] |
BOBE K, WILLBOLD E, HAUPT M, et al. Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation [J]. Acta Biomaterialia, 2022, 148: 389–404. doi: 10.1016/j.actbio.2022.06.005
|
[7] |
MOHAMMADI ZERANKESHI M, ALIZADEH R, GERASHI E, et al. Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys [J]. Journal of Magnesium and Alloys, 2022, 10(7): 1737–1785. doi: 10.1016/j.jma.2022.04.010
|
[8] |
谢奇峻. AZ31B镁合金冲击动态力学行为的实验和本构模型研究 [D]. 成都: 西南交通大学, 2018: 1–2.
XIE Q J. Experimental and constitutive model study on impact dynamic mechanical behavior of AZ31B magnesium alloy [D]. Chengdu: Southwest Jiaotong University, 2018: 1–2.
|
[9] |
FENG F, HUANG S Y, MENG Z H, et al. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures [J]. Materials & Design, 2014, 57: 10–20.
|
[10] |
ULACIA I, SALISBURY C P, HURTADO I, et al. Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures [J]. Journal of Materials Processing Technology, 2011, 211(5): 830–839. doi: 10.1016/j.jmatprotec.2010.09.010
|
[11] |
ZHANG W G, LI K, CHI R Q, et al. Insights into microstructural evolution and deformation behaviors of a gradient textured AZ31B Mg alloy plate under hypervelocity impact [J]. Journal of Materials Science & Technology, 2021, 91: 40–57.
|
[12] |
PÄRNÄNEN T, ALDERLIESTEN R, RANS C, et al. Applicability of AZ31B-H24 magnesium in fibre metal laminates: an experimental impact research [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1578–1586. doi: 10.1016/j.compositesa.2012.04.008
|
[13] |
ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. doi: 10.1016/j.jma.2019.05.013
|
[14] |
WANG Q L, BERTOLINI R, BRUSCHI S, et al. Anisotropic fracture behavior of AZ31 magnesium alloy sheets as a function of the stress state and temperature [J]. International Journal of Mechanical Sciences, 2019, 163: 105146. doi: 10.1016/j.ijmecsci.2019.105146
|
[15] |
EZHIL VENDHAN B, HARIKRISHNA K L, LAKSHMINARAYANAN A K. Numerical simulation on effect of impact velocity and target thickness in magnesium alloy AZ31B [J]. Applied Mechanics and Materials, 2015, 787: 291–295. doi: 10.4028/www.scientific.net/AMM.787.291
|
[16] |
周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 35–36.
ZHOU L. A new dynamic constitutive model for metallic materials [D]. Hefei: University of Science and Technology of China, 2019: 35–36.
|
[17] |
潘鸿晨. AZ31B镁合金板材宏-微观力学模型和韧性断裂准则研究 [D]. 上海: 上海交通大学, 2018: 31–32.
PAN H C. Study on Macro-Micro mechanical model and ductility fracture criterion of rolled AZ31B magnesium alloy [D]. Shanghai: Shanghai Jiao Tong University, 2018: 31–32.
|
[18] |
FENG F, HUANG S Y, MENG Z H, et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state [J]. Materials Science and Engineering: A, 2014, 594: 334–343. doi: 10.1016/j.msea.2013.11.008
|
[19] |
LI Z G, WANG J J, YANG H F, et al. A modified Johnson-Cook constitutive model for characterizing the hardening behavior of typical magnesium alloys under tension at different strain rates: experiment and simulation [J]. Journal of Materials Engineering and Performance, 2020, 29(12): 8319–8330. doi: 10.1007/s11665-020-05288-6
|
[20] |
KURUKURI S, WORSWICK M J, GHAFFARI TARI D, et al. Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2015): 20130216. doi: 10.1098/rsta.2013.0216
|
[21] |
吴秀敏, 池成忠, 崔晓磊, 等. 应变速率与温度对AZ31B镁合金板材各向异性的影响 [J]. 轻合金加工技术, 2020, 48(5): 23–28.
WU X M, CHI C Z, CUI X L, et al. Effect of strain rate and temperature on anisotropy of AZ31B magnesium alloy sheet [J]. Light Alloy Fabrication Technology, 2020, 48(5): 23–28.
|
[22] |
MENG Z H, HUANG S Y, HU J H. Research on flow stress of magnesium alloy sheet under warm and high strain rate forming condition [J]. Advanced Materials Research, 2011, 189: 2522–2525.
|
[23] |
KANG J E, YOON J Y, CHOI I K, et al. Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs [J]. Design & Manufacturing, 2021, 15(2): 23–29.
|
[24] |
RODRIGUEZ A K, KRIDLI G, AYOUB G, et al. Effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B alloys sheets [J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3115–3125. doi: 10.1007/s11665-013-0598-8
|
[25] |
DONG J R, ZHANG D F, DONG Y F, et al. Critical damage value of AZ31B magnesium alloy with different temperatures and strain rates [J]. Rare Metals, 2021, 40(1): 137–142. doi: 10.1007/s12598-014-0440-y
|
[26] |
XUE S, YANG T, LIU X D, et al. Strain rate and temperature effects on formability and microstructure of AZ31B magnesium alloy sheet [J]. Metals, 2022, 12(7): 1103. doi: 10.3390/met12071103
|
[27] |
RODRIGUEZ A K, AYOUB G A, MANSOOR B, et al. Effect of strain rate and temperature on fracture of magnesium alloy AZ31B [J]. Acta Materialia, 2016, 112: 194–208. doi: 10.1016/j.actamat.2016.03.061
|
[28] |
JAIMIN A, KOTKUNDE N, SADHUKHAN A, et al. Flow stress and work hardening behaviour of Mg-3Al-1Zn alloy [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(3): 719–730. doi: 10.1177/09544089221106970
|
[29] |
周琳, 文鹤鸣. 金属材料失效分析的新方法 [J]. 高压物理学报, 2019, 33(1): 014103. doi: 10.11858/gywlxb.20180613
ZHOU L, WEN H M. A new approach for the failure of metallic materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014103. doi: 10.11858/gywlxb.20180613
|
[30] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistic. The Hague, Netherlands, 1983.
|
[31] |
JIA W T, WANG L J, MA L F, et al. Deformation failure behavior and fracture model of twin-roll casting AZ31 alloy under multiaxial stress state [J]. Journal of Materials Research and Technology, 2022, 17: 2047–2058.
|
[32] |
JONES T L, DELORME R D. Development of a ballistic specification for magnesium alloy AZ31B: ARL-TR-4664 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2008.
|
[33] |
GSCHNEIDNER K A JR. Physical properties and interrelationships of metallic and semimetallic elements [J]. Solid State Physics, 1964, 16: 275–426.
|
[34] |
孙洪敏. AZ31/1060磁脉冲焊接界面成形机制数值模拟与试验研究 [D]. 太原: 太原科技大学, 2021: 32.
SUN H M. Numerical simulation and experimental study on interface forming mechanism of AZ31/1060 magnetic pulse welding [D]. Taiyuan: Taiyuan University of Science and Technology, 2021: 32.
|
[35] |
RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390.
|