[1] |
ZHOU Y, SADLER J D, HURRICANE O A. Instabilities and mixing in inertial confinement fusion [J]. Annual Review of Fluid Mechanics, 2025, 57: 197–225. doi: 10.1146/ANNUREV-FLUID-022824-110008
|
[2] |
BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers [J]. Nature Physics, 2016, 12(5): 435–448. doi: 10.1038/nphys3736
|
[3] |
BOKMAN G T, BIASIORI-POULANGES L, MEYER D W, et al. Scaling laws for bubble collapse driven by an impulsive shock wave [J]. Journal of Fluid Mechanics, 2023, 967: A33. doi: 10.1017/jfm.2023.514
|
[4] |
REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets: progress and challenges [J]. Progress in Aerospace Sciences, 2019, 105: 40–59. doi: 10.1016/j.paerosci.2018.12.002
|
[5] |
YANG H X, RADULESCU M I. Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2021, 923: A36. doi: 10.1017/jfm.2021.594
|
[6] |
HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181: 41–76. doi: 10.1017/S0022112087002003
|
[7] |
PICONE J M, BORIS J P. Vorticity generation by shock propagation through bubbles in a gas [J]. Journal of Fluid Mechanics, 1988, 189: 23–51. doi: 10.1017/S0022112088000904
|
[8] |
LI D D, WANG G, GUAN B. On the circulation prediction of shock-accelerated elliptical heavy gas cylinders [J]. Physics of Fluids, 2019, 31(5): 056104. doi: 10.1063/1.5090370
|
[9] |
BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics [J]. Journal of Fluid Mechanics, 2012, 696: 67–93. doi: 10.1017/jfm.2012.8
|
[10] |
RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43: 117–140. doi: 10.1146/annurev-fluid-122109-160744
|
[11] |
RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207
|
[12] |
MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. doi: 10.1007/BF01015969
|
[13] |
RUDINGER G, SOMERS L M. Behaviour of small regions of different gases carried in accelerated gas flows [J]. Journal of Fluid Mechanics, 1960, 7(2): 161–176. doi: 10.1017/S0022112060001419
|
[14] |
邹立勇, 刘仓理, 庞勇, 等. 激波作用下SF6气泡界面演化和射流发展的数值模拟 [J]. 高压物理学报, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013
ZOU L Y, LIU C L, PANG Y, et al. A numerical study on interface evolution and jet development of a shocked SF6 gas bubble [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013
|
[15] |
ZHANG D J, XU A G, SONG J H, et al. Specific-heat ratio effects on the interaction between shock wave and heavy-cylindrical bubble: based on discrete Boltzmann method [J]. Computers & Fluids, 2023, 265: 106021. doi: 10.1016/j.compfluid.2023.106021
|
[16] |
朱跃进, 于蕾, 潘剑锋, 等. 激波冲击SF6重气泡引发射流的数值模拟 [J]. 爆炸与冲击, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135
ZHU Y J, YU L, PAN J F, et al. Simulation on jet formation induced by interaction of shock wave with SF6 bubble [J]. Explosion and Shock Waves, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135
|
[17] |
ZHAI Z G, SI T, ZOU L Y, et al. Jet formation in shock-heavy gas bubble interaction [J]. Acta Mechanica Sinica, 2013, 29(1): 24–35. doi: 10.1007/s10409-013-0003-8
|
[18] |
ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders [J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127
|
[19] |
BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2010, 82(5): 056318. doi: 10.1103/PhysRevE.82.056318
|
[20] |
LI P, BAI J S, WANG T, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 262–268. doi: 10.1007/s11433-009-0269-9
|
[21] |
柏劲松, 王涛, 邹立勇, 等. 可压缩多介质粘性流体和湍流的大涡模拟 [J]. 爆炸与冲击, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07
BAI J S, WANG T, ZOU L Y, et al. Large eddy simulation for the multi-viscosity-fluid and turbulence [J]. Explosion and Shock Waves, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07
|
[22] |
ORLICZ G C, BALASUBRAMANIAN S, VOROBIEFF P, et al. Mixing transition in a shocked variable-density flow [J]. Physics of Fluids, 2015, 27(11): 114102. doi: 10.1063/1.4935183
|
[23] |
ZOU L Y, ZHAI Z G, LIU J H, et al. Energy convergence effect and jet phenomenon of shock-heavy spherical bubble interaction [J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 124703.
|
[24] |
GEORGIEVSKIY P Y, LEVIN V A, SUTYRIN O G. Interaction of a shock with elliptical gas bubbles [J]. Shock Waves, 2015, 25(4): 357–369. doi: 10.1007/s00193-015-0557-4
|
[25] |
OU J F, DING J C, LUO X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction [J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5
|
[26] |
FAN E, GUAN B, WEN C Y, et al. Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities [J]. Physics of Fluids, 2019, 31(2): 026103.
|
[27] |
YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity [J]. Journal of Fluid Mechanics, 1994, 258: 217–244. doi: 10.1017/S0022112094003307
|
[28] |
SAMTANEY R, ZABUSKY N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws [J]. Journal of Fluid Mechanics, 1994, 269: 45–78. doi: 10.1017/S0022112094001485
|
[29] |
XU A G, ZHANG D J, GAN Y B. Advances in the kinetics of heat and mass transfer in near-continuous complex flows [J]. Frontiers of Physics, 2024, 19(4): 42500. doi: 10.1007/s11467-023-1353-8
|
[30] |
廖深飞, 邹立勇, 刘金宏, 等. 激波两次冲击下重气柱Richtmyer-Meshkov不稳定性的粒子图像测速研究 [J]. 高压物理学报, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005
LIAO S F, ZOU L Y, LIU J H, et al. A particle image velocimetry study of Richtmyer-Meshkov instability in a twice-shocked heavy gas cylinder [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005
|
[31] |
ZOU L Y, HUANG W B, LIU C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders [J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439
|
[32] |
FENG L L, XU J R, ZHAI Z G, et al. Evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459
|
[33] |
郑纯, 何勇, 张焕好, 等. 激波诱导环形SF6气柱演化的机理 [J]. 爆炸与冲击, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
ZHENG C, HE Y, ZHANG H H, et al. On the evolution mechanism of the shock-accelerated annular SF6 cylinder [J]. Explosion and Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
|
[34] |
朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144
ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144
|
[35] |
LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
|
[36] |
FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
|
[37] |
SUN M, TAKAYAMA K. Conservative smoothing on an adaptive quadrilateral grid [J]. Journal of Computational Physics, 1999, 150(1): 143–180. doi: 10.1006/jcph.1998.6167
|
[38] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin: Springer, 2009.
|
[39] |
ZHANG E L, LIAO S F, ZOU L Y, et al. Refraction of a triple-shock configuration at planar fast-slow gas interfaces [J]. Journal of Fluid Mechanics, 2024, 984: A49. doi: 10.1017/jfm.2024.245
|
[40] |
张恩来, 廖深飞, 邹立勇, 等. 马赫反射波系冲击诱导平面界面失稳的数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2024, 54(10): 104704.
ZHANG E L, LIAO S F, ZOU L Y, et al. Numerical simulation of the instability of a planar interface subjected to a Mach reflection wave configuration [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(10): 104704.
|