[1] 夏国俊. 高比冲氪工质霍尔推力器研究[D]. 哈尔滨: 哈尔滨工业大学, 2020 (in Chinese) Xia G J. Reserch on high specific impulse hall thruster wih krypton[D]. Harbin: Harbin Institute of Technology, 2020
[2] Zhang G C, Ren J X, Tang H B, et al. Plasma diagnosis inside the discharge channel of a low-power hall thruster working on Xe/Kr mixtures[J]. Acta Astronautica, 2023, 204: 389−401 doi: 10.1016/j.actaastro.2023.01.013
[3] Lausberg S. Vacuum challenges for ion thruster testing: advanced cryogenic solutions for xenon pumping[J]. Vakuum in Forschung und Praxis, 2020, 32(4): 22−28 doi: 10.1002/vipr.202000741
[4] Jovel D R, Cabrera J D, Walker M L R. Current pathways model for hall thruster plumes in ground-based vacuum test facilities: measurements and observations[J]. Journal of Electric Propulsion, 2024, 3(1): 35 doi: 10.1007/s44205-024-00097-8
[5] 王军伟, 鄂东梅, 李强, 等. 电推进地面试验真空系统配置策略与研究[J]. 真空, 2015, 52(3): 37−41 (in chinese) Wang J W, E D M, Li Q, et al. Research on configuration strategy of vacuum system in electric propulsion environmental test[J]. Vacuum, 2015, 52(3): 37−41
[6] 赵月帅, 孙立臣, 邵容平, 等. 基于CFD方法的低温泵热力学设计与数值仿真研究[J]. 真空科学与技术学报, 2018, 38(6): 443−449 (in chinese) Zhao Y S, Sun L C, Shao R P, et al. Thermal design and evaluation of cryopump: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(6): 443−449
[7] Neumann A, Brchnelova M. Modelling of cryopumps for space electric propulsion usage[J]. Aerospace, 2024, 11(3): 177 doi: 10.3390/aerospace11030177
[8] Garner C, Polk J, Brophy J, et al. Methods for cryopumping xenon[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista: AIAA, 1996
[9] 李培印, 林博颖, 吕剑锋, 等. 氙泵系统设计[J]. 真空, 2018, 55(4): 21−25 (in chinese) Li P Y, Lin B Y, Lv J F, et al. Design of xenon pump[J]. Vacuum, 2018, 55(4): 21−25
[10] Ling G L, Wei L J, Cai G B. Pumping speed of cryopump for xenon[J]. Journal of Aerospace Power, 2015, 30(7): 1731−1736
[11] Baechler W G. Cryopumps for research and industry[J]. Vacuum, 1987, 37(1-2): 21−29 doi: 10.1016/0042-207X(87)90078-9
[12] Johnson V J. Properties of materials at low temperature (Phase 1). National bureau of standards, cryogenic engineering laboratory[M]. New York: Pergamon Press, 1961
[13] Viges E A, Jorns B A, Gallimore A D, et al. University of Michigan’s upgraded large vacuum test facility[C]//Proceedings of the 36th International Electric Propulsion Conference, Vienna: University of Vienna, 2019
[14] Gangradey R, Mishra J, Mukherjee S, et al. Experimental investigation of thermal properties of materials used to develop cryopump[J]. Fusion Science and Technology, 2021, 77(5): 333−339
[15] Welch K M, Andeen B, dE Rijke J E, et al. Recommended practices for measuring the performance and characteristics of closed-loop gaseous helium cryopumps[J]. Journal of Vacuum Science & Technology A, 1999, 17(5): 3081−3095
[16] ISO 21360-6: 2023 Vacuum technology—standard methods for measuring vacuum-pump performance—part 6: cryogenic vacuum pumps[S].Geneva, Switzerland: ISO, 2023