[1] |
夏国俊. 高比冲氪工质霍尔推力器研究[D]. 哈尔滨: 哈尔滨工业大学, 2020 (in Chinese)
Xia G J. Reserch on high specific impulse hall thruster wih krypton[D]. Harbin: Harbin Institute of Technology, 2020
|
[2] |
Zhang G C, Ren J X, Tang H B, et al. Plasma diagnosis inside the discharge channel of a low-power hall thruster working on Xe/Kr mixtures[J]. Acta Astronautica,2023,204:389−401 doi: 10.1016/j.actaastro.2023.01.013
|
[3] |
Lausberg S. Vacuum challenges for ion thruster testing: advanced cryogenic solutions for xenon pumping[J]. Vakuum in Forschung und Praxis,2020,32(4):22−28 doi: 10.1002/vipr.202000741
|
[4] |
Jovel D R, Cabrera J D, Walker M L R. Current pathways model for hall thruster plumes in ground-based vacuum test facilities: measurements and observations[J]. Journal of Electric Propulsion,2024,3(1):35 doi: 10.1007/s44205-024-00097-8
|
[5] |
王军伟, 鄂东梅, 李强, 等. 电推进地面试验真空系统配置策略与研究[J]. 真空,2015,52(3):37−41 (in chinese)
Wang J W, E D M, Li Q, et al. Research on configuration strategy of vacuum system in electric propulsion environmental test[J]. Vacuum,2015,52(3):37−41
|
[6] |
赵月帅, 孙立臣, 邵容平, 等. 基于CFD方法的低温泵热力学设计与数值仿真研究[J]. 真空科学与技术学报,2018,38(6):443−449 (in chinese)
Zhao Y S, Sun L C, Shao R P, et al. Thermal design and evaluation of cryopump: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology,2018,38(6):443−449
|
[7] |
Neumann A, Brchnelova M. Modelling of cryopumps for space electric propulsion usage[J]. Aerospace,2024,11(3):177 doi: 10.3390/aerospace11030177
|
[8] |
Garner C, Polk J, Brophy J, et al. Methods for cryopumping xenon[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista: AIAA, 1996
|
[9] |
李培印, 林博颖, 吕剑锋, 等. 氙泵系统设计[J]. 真空,2018,55(4):21−25 (in chinese)
Li P Y, Lin B Y, Lv J F, et al. Design of xenon pump[J]. Vacuum,2018,55(4):21−25
|
[10] |
Ling G L, Wei L J, Cai G B. Pumping speed of cryopump for xenon[J]. Journal of Aerospace Power,2015,30(7):1731−1736
|
[11] |
Baechler W G. Cryopumps for research and industry[J]. Vacuum,1987,37(1-2):21−29 doi: 10.1016/0042-207X(87)90078-9
|
[12] |
Johnson V J. Properties of materials at low temperature (Phase 1). National bureau of standards, cryogenic engineering laboratory[M]. New York: Pergamon Press, 1961
|
[13] |
Viges E A, Jorns B A, Gallimore A D, et al. University of Michigan’s upgraded large vacuum test facility[C]//Proceedings of the 36th International Electric Propulsion Conference, Vienna: University of Vienna, 2019
|
[14] |
Gangradey R, Mishra J, Mukherjee S, et al. Experimental investigation of thermal properties of materials used to develop cryopump[J]. Fusion Science and Technology,2021,77(5):333−339
|
[15] |
Welch K M, Andeen B, dE Rijke J E, et al. Recommended practices for measuring the performance and characteristics of closed-loop gaseous helium cryopumps[J]. Journal of Vacuum Science & Technology A,1999,17(5):3081−3095
|
[16] |
ISO 21360-6: 2023 Vacuum technology—standard methods for measuring vacuum-pump performance—part 6: cryogenic vacuum pumps[S].Geneva, Switzerland: ISO, 2023
|