[1] |
罗会仟. 超导与诺贝尔奖 [J]. 自然杂志, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005
LUO H Q. Nobel Prize in superconductivity research [J]. Chinese Journal of Nature, 2017, 39(6): 427–436. doi: 10.3969/j.issn.0253-9608.2017.06.005
|
[2] |
COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908
|
[3] |
WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
|
[4] |
MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515
|
[5] |
CUDAZZO P, PROFETA G, SANNA A, et al. Ab initio description of high-temperature superconductivity in dense molecular hydrogen [J]. Physical Review Letters, 2008, 100(25): 257001. doi: 10.1103/PhysRevLett.100.257001
|
[6] |
DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
|
[7] |
ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
|
[8] |
段德芳, 马艳斌, 邵子霁, 等. 高压下富氢化合物的结构与奇异超导电性 [J]. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
DUAN D F, MA Y B, SHAO Z J, et al. Structures and novel superconductivity of hydrogen-rich compounds under high pressures [J]. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
|
[9] |
WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466.
|
[10] |
MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
|
[11] |
DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
|
[12] |
DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
|
[13] |
PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
|
[14] |
LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995.
|
[15] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[16] |
KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
|
[17] |
孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展 [J]. 物理学报, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
SUN Y, LIU H Y, MA Y M. Progress on hydrogen-rich superconductors under high pressure [J]. Acta Physica Sinica, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
|
[18] |
SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
|
[19] |
ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
|
[20] |
HUO Z H, DUAN D F, JIANG Q W, et al. Cubic H3S stabilized by halogens: high-temperature superconductors at mild pressure [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(11): 118211.
|
[21] |
CHEN W X, MA T C, HUO Z H, et al. High-temperature superconductivity in clathrate thorium-doped hexahydrides A1−xThxH6 (A = La, Ac, and Y) at moderate pressure [J]. Physical Review B, 2024, 109(22): 224505. doi: 10.1103/PhysRevB.109.224505
|
[22] |
LIANG X W, BERGARA A, WEI X D, et al. Prediction of high-Tc superconductivity in ternary lanthanum borohydrides [J]. Physical Review B, 2021, 104(13): 134501. doi: 10.1103/PhysRevB.104.134501
|
[23] |
DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511
|
[24] |
SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
|
[25] |
SONG X X, HAO X K, WEI X D, et al. Superconductivity above 105 K in nonclathrate ternary lanthanum borohydride below megabar pressure [J]. Journal of the American Chemical Society, 2024, 146(20): 13797–13804. doi: 10.1021/jacs.3c14205
|
[26] |
GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504
|
[27] |
DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022: 9784309.
|
[28] |
LIU P Y, ZHAO W D, LIU Z, et al. High-temperature superconductivities and crucial factors influencing the stability of LaThH12 under moderate pressures [J]. Physical Chemistry Chemical Physics, 2024, 26(10): 8237–8246. doi: 10.1039/D3CP05408J
|
[29] |
SONG P, DURAJSKI A P, HOU Z F, et al. (La, Th)H10: potential high-Tc (242 K) superconductors stabilized thermodynamically below 200 GPa [J]. The Journal of Physical Chemistry C, 2024, 128(6): 2656–2665. doi: 10.1021/acs.jpcc.3c07213
|
[30] |
SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
|
[31] |
YAO S C, WANG C Z, LIU S Y, et al. Formation mechanism of chemically precompressed hydrogen clathrates in metal superhydrides [J]. Inorganic Chemistry, 2021, 60(17): 12934–12940. doi: 10.1021/acs.inorgchem.1c01340
|
[32] |
WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
|
[33] |
WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
|
[34] |
GAO B, GAO P Y, LU S H, et al. Interface structure prediction via CALYPSO method [J]. Science Bulletin, 2019, 64(5): 301–309. doi: 10.1016/j.scib.2019.02.009
|
[35] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[36] |
HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
|
[37] |
BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[38] |
PERDEW J P, WANG Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [J]. Physical Review B, 1992, 46(20): 12947–12954. doi: 10.1103/PhysRevB.46.12947
|
[39] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[40] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115–13118. doi: 10.1103/PhysRevB.48.13115
|
[41] |
GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
|
[42] |
郭鉴宁, 王煜龙, 朱程程, 等. 高压下二元富氢超导体的实验研究进展 [J]. 高压物理学报, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742
GUO J N, WANG Y L, ZHU C C, et al. Progress of experimental research on binary hydride superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742
|
[43] |
ALLEN P B, DYNES R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905–922. doi: 10.1103/PhysRevB.12.905
|