[1] Dharmadasa I M, Ives M, Brooks J S, et al. Application of glow discharge optical emission spectroscopy to study semiconductors and semiconductor devices[J]. Semiconductor science and technology, 1995, 10(3): 369 doi: 10.1088/0268-1242/10/3/023
[2] Mazurek W. Key developments in submarine air monitoring and air purification during the past 20 years[C]. Submarine Air Monitoring and Air Purification Conference, 2015, 5−8
[3] Alberici R M, Simas R C, Sanvido G B, et al. Ambient mass spectrometry: Bringing ms into the ‘real world’[J]. Analytical and Bioanalytical Chemistry, 2010, 398(1): 265−294 doi: 10.1007/s00216-010-3808-3
[4] Harris G A, Galhena A S, Fernandez F M. Ambient sampling/ionization mass spectrometry: Applications and current trends[J]. Analytical Chemistry, 2011, 83(12): 4508−4538 doi: 10.1021/ac200918u
[5] Huang M Z, Cheng S C, Cho Y T, et al. Ambient ionization mass spectrometry: A tutorial[J]. Analytica Chimica Acta, 2011, 702(1): 1−15 doi: 10.1016/j.aca.2011.06.017
[6] 张体强, 胡树国, 韩桥. 大气压电离质谱及其用于超高纯气体分析研究进展[J]. 岩矿测试, 2014, 33(6): 775−781 (in Chinese) Zhang T Q, Hu S G, Han Q. Atmospheric pressure ionization mass spectrometry and its application in the analysis of ultra-high purity gases: a research progress[J]. Rock and Mineral Analysis, 2014, 33(6): 775−781
[7] Blessing J E, Ellefson R E, Raby B A, et al. Recommended practice for process sampling for partial pressure analysis[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2007, 25(1): 167−186
[8] 江游, 方向, 黄泽建, 等. 大气压接口-单四极杆质谱仪的研制[J]. 质谱学报, 2010, 31(6): 689−694 (in Chinese) Jiang Y, Fang X, Huang Z J, et al. Development of an atmospheric pressure interface single quadrupole mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(6): 689−694
[9] 成永军, 胡树国, 董猛, 等. 基于四极质谱计质量歧视效应修正的材料CxHy 放气率测试方法研究[J]. 真空科学与技术学报, 2023, 43(11): 1023−1030 (in Chinese) Cheng Y J, Hu S G, Dong M, et al. Research on testing method for CxHy outgassing rate of materials based on correction of mass discrimination effect in quadrupole mass spectrometer[J]. Journal of Vacuum Science and Technology, 2023, 43(11): 1023−1030
[10] 冯焱, 郭美如, 张涤新, 等. 一种高真空零部件放气率测试装置的研制[J]. 真空科学与技术学报, 2024, 44(6): 556−562 (in Chinese) Feng Y, Guo M R, Zhang D X, et al. Development of a testing device for outgassing rate of high-vacuum components[J]. Journal of Vacuum Science and Technology, 2024, 44(6): 556−562
[11] Li X, Zhang Y, Ge S, et al. Portable linear ion trap mass spectrometer with compact multistage vacuum system and continuous atmospheric pressure interface[J]. Analyst, 2019, 144(17): 5127−5135 doi: 10.1039/C9AN01047E
[12] 李得天, 郭美如, 葛敏, 等. 固定流导法真空漏孔校准装置[J]. 真空科学与技术学报, 2006, 26(5): 358−362 (in Chinese) doi: 10.3969/j.issn.1672-7126.2006.05.005 Li D T, Guo M R, Ge M, et al. Calibration of ultralow leak rate with constant conductance technique[J]. Chinese journal of vacuum science and technology, 2006, 26(5): 358−362 doi: 10.3969/j.issn.1672-7126.2006.05.005
[13] 卢耀文, 陈旭, 李得天, 等. 便携式真空计校准装置[J]. 真空科学与技术学报, 2013, 33(5): 462−467 (in Chinese) doi: 10.3969/j.issn.1672-7126.2013.05.13 Lu Y W, Chen X, Li D T, et al. Novel type of portable vacuum gauge calibration apparatus[J]. Chinese journal of vacuum science and technology, 2013, 33(5): 462−467 doi: 10.3969/j.issn.1672-7126.2013.05.13
[14] 龚伟, 张涤新, 成永军, 等. 小孔流导的理论计算与蒙特卡罗计算[J]. 真空与低温, 2009, 15(4): 215−221 (in Chinese) doi: 10.3969/j.issn.1006-7086.2009.04.005 Gong W, Zhang D X, Cheng Y J, et al. Analytical method calculation and monte carlo calculation of the orifice conductance[J]. Vacuum and cryogenics, 2009, 15(4): 215−221 doi: 10.3969/j.issn.1006-7086.2009.04.005
[15] 达道安, 邱家稳, 肖祥正, 等. 真空设计手册[M]. 北京: 国防工业出版社, 2004: 100−104 (in Chinese) Da D A, Qiu J W, Xiao X Z, et al. Vacuum design manual[M]. Beijing: National Defense Industry Press, 2004: 100−104
[16] 张涤新, 郭美如, 冯焱, 等. 小孔流导测量方法的研究[J]. 真空与低温, 2005(1): 22−28 (in Chinese) doi: 10.3969/j.issn.1006-7086.2005.01.005 Zhang D X, Guo M R, Feng Y, et al. Study on measurement method of small orifice conductance[J]. Vacuum and cryogenics, 2005(1): 22−28 doi: 10.3969/j.issn.1006-7086.2005.01.005
[17] Jousten K, Menzer H, Wandrey D, et al. New, fully automated, primary standard for generating vacuum pressures between 10−10 Pa and 3×10−2 Pa with respect to residual pressure[J]. Metrologia, 1999, 36: 493−497 doi: 10.1088/0026-1394/36/6/2
[18] 卢耀文, 陈旭, 李得天, 等. 便携式真空漏孔校准装置[J]. 真空科学与技术学报, 2013, 33(12): 1179−1183 (in Chinese) Lu Y W, Chen X, Li D T, et al. Novel type of portable vacuum leak calibrator apparatus[J]. Chinese journal of vacuum science and technology, 2013, 33(12): 1179−1183
[19] Jousten K, Menzer H, Niepraschk R. A new fully automated gasflow meter at the PTB for flow rates between 10−13 mol/s and 10−6 mol/s[J]. Meteologia, 2003, 39(6): 519−529
[20] 甘婧, 王永健, 王旭迪. 基于动态差压法的分子流流导测量[J]. 真空与低温, 2019, 25(4): 245−250 (in Chinese) doi: 10.3969/j.issn.1006-7086.2019.04.009 Gan J, Wang Y J, Wang X D. Measurement of molecular flow conductance based on dynamic differential pressure method[J]. Vacuum and Cryogenics, 2019, 25(4): 245−250 doi: 10.3969/j.issn.1006-7086.2019.04.009
[21] 张涤新, 郭美如, 冯焱, 等. 定容式流导法微流量校准装置[J]. 真空科学与技术学报, 2005, 25(1): 21−25 (in Chinese) doi: 10.3969/j.issn.1672-7126.2005.01.006 Zhang D X, Guo M R, Feng Y, et al. Constant volume conductance method for micro-flow calibration device[J]. Journal of Vacuum Science and Technology, 2005, 25(1): 21−25 doi: 10.3969/j.issn.1672-7126.2005.01.006
[22] Kaiser S, Leidich F, Brüning D. Gas flow dynamics in inlet capillaries: Evidence for non-laminar conditions[J]. Journal of the American Society for Mass Spectrometry, 2016, 27: 1550−1563 doi: 10.1007/s13361-016-1415-z
[23] Wutz M, Adam H. Theorie und Praxis der Vakuumtechnik[M]. Braunschweig: Vieweg Teubner Verlag, 1988
[24] Venerus D C. Laminar capillary flow of compressible viscous fluids[J]. Journal of Fluid Mechanics, 2006, 555: 59−80 doi: 10.1017/S0022112006008755
[25] Wutz M, Adam H, Walcher W. Handbuch Vakuumtechnik[M]. Braunschweig: Vieweg und Sohn Verlagsgesellschaft, 1997
[26] Livesey R G. Solution methods for gas flow in ducts through the whole pressure regime[J]. Vacuum, 2004, 76(1): 101−107 doi: 10.1016/j.vacuum.2004.05.015