[1] 王晓东, 张鹏飞, 李博, 等. 分子真空泵研究进展[J]. 真空科学与技术学报, 2021, 41(9): 817−825 (in Chinese) Wang X D, Zhang P F, Li B, et al. Research progress of molecular vacuum pump[J]. Chinese Journal of Vacuum Science And Technology, 2021, 41(9): 817−825
[2] 巴德纯, 王晓冬, 刘坤, 等. 现代涡轮分子泵的进展[J]. 真空, 2010, 47(4): 1−6 (in Chinese) Ba D C, Wang X D, Liu K, et al. Progress in R&D of modern turbo-molecular pumps[J]. Vacuum, 2010, 47(4): 1−6
[3] 匡永麟, 王晓冬, 黄海龙, 等. 涡轮分子泵叶列抽气性能的计算方法改进[J]. 真空科学与技术学报, 2022, 42(1): 26−30 (in Chinese) Kuang Y L, Wang X D, Huang H L, et al. Improvement of the calculation method of the pumping performance of the turbomolecular pump blade row[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(1): 26−30
[4] 孙坤, 邓海顺, 胡鑫, 等. 高转速背景下涡轮分子泵的发展机遇与挑战[J]. 真空科学与技术学报, 2024, 44(8): 657−667 (in Chinese) Sun K, Deng H S, Hu X, et al. The development opportunities and challenges of turbomolecular pump under the background of high rotational speed[J]. Chinese Journal of Vacuum Science And Technology, 2024, 44(8): 657−667
[5] 谢元华, 佟英博, 谢天意, 等. 径向涡轮分子泵叶片结构优化及仿真分析[J]. 真空科学与技术学报, 2025, 45(1): 36−42 (in Chinese) Xie Y H, Tong Y B, Xie T Y, et al. Structural optimization and simulation analysis of radial turbomolecular pump blade[J]. Chinese Journal of Vacuum Science and Technology, 2025, 45(1): 36−42
[6] 巴德纯, 王晓冬. 分子真空泵的理论与实践[M]. 北京: 科学出版社, 2021 (in Chinese) Ba D C, Wang X D. The theory and practice of molecular vacuum pump[M]. Beijing: Science press, 2021
[7] 郑世强, 陈诚, 刘刚, 等. 磁悬浮分子泵高速转子章动相位裕度跟踪补偿控制[J]. 机械工程学报, 2018, 54(17): 100−107 (in Chinese) doi: 10.3901/JME.2018.17.100 Zheng S Q, Chen C, Liu G, et al. High-speed rotor nutation phase margin tracking compensation control of magnetic suspension molecular pump[J]. Journal of Mechanical Engineering, 2018, 54(17): 100−107 doi: 10.3901/JME.2018.17.100
[8] 姚润晖, 周瑾, 丁嵩. 磁悬浮分子泵转子振动抑制研究[J]. 振动与冲击, 2024, 43(1): 116−122 (in Chinese) Yao R H, Zhou J, Ding S, et al. Vibration suppression of magnetic levitation molecular pump rotor[J]. Journal of Vibration and Shock, 2024, 43(1): 116−122
[9] 付磊, 徐向波, 李俊峰. 无转速传感器的磁悬浮分子泵陀螺效应抑制[J]. 光学精密仪器, 2024, 32(21): 3211−3221 (in Chinese) doi: 10.37188/OPE.20243221.3211 Fu L, Xu X B, Li J F. Gyroscopic effect suppression of magnetic levitation molecular turbo without speed sensor[J]. Optics and Precision Engineering, 2024, 32(21): 3211−3221 doi: 10.37188/OPE.20243221.3211
[10] 熊万里, 孙文彪, 刘侃, 等. 高速电主轴主动磁悬浮技术研究进展[J]. 机械工程学报, 2021, 57(13): 1−17 (in Chinese) Xiong W L, Sun W B, Liu K, et al. Active magnetic bearing technology development in highspeed motorized spindles[J]. Journal of Mechanical Engineering, 2021, 57(13): 1−17
[11] 沈易霏, 韩邦成, 郑世强. 非对称大惯量刚性磁悬浮高速转子陀螺效应自适应抑制方法研究[J]. 振动与冲击, 2016, 35(22): 72−79 (in Chinese) Shen Y F, Han B C, Zheng S Q. Research on the adaptive suppression of gyroscopic effect of rigid asymmetric magnetically suspended high-speed rotor with large inertia[J]. Journal of Vibration and Shock, 2016, 35(22): 72−79
[12] 窦甄. 基于陀螺效应的磁悬浮飞轮涡动与RBFNN滑模控制[D]. 哈尔滨: 哈尔滨工程大学, 2022 (in Chinese) Dou Z. Vortex of magnetic levitation flywheel and RBFNN sliding mode control based on gyro effect[D]. Harbin: Harbin Engineering University, 2022
[13] 陈亮亮, 祝长生, 王忠博. 电磁轴承高速飞轮转子模态分离-状态反馈解耦控制[J]. 中国电机工程学报, 2017, 37(18): 5461−5472,5546 (in Chinese) Chen L L, Zhu C S, Wang Z B. Decou-pling control for active magnetic bearing high-speed flywheel rotor based on mode separation and state feedback[J]. Proceedings of the CSEE, 2017, 37(18): 5461−5472,5546
[14] Zhang K, Dong J P, Dai X J, et al. Vibration control of a turbo molecular pump suspended by active magnetic bearings[C]. Canada: Proceedings of ASME Turbo Expo 2011, 2011
[15] Fang J C, Ren Y, Fan Y H. Nutation and precession stability criterion of magnetically suspended rigid rotors with gyroscopic effects based on positive and negative frequency characteristics[J]. IEEE Transactions on Industrial Electronics, 2013, 61(4): 2003−2014