[1] |
刘志, 万唯实, 王东. 中国光子大科学装置的发展[J]. 自然杂志, 2024, 46(3): 161−172 (in Chinese)
Liu Z, Wan W S, Wang D. Development of large-scale user facilities for photon science in China[J]. Chinese Journal of Nature, 2024, 46(3): 161−172
|
[2] |
董瑞超, 冯金泽, 王新成, 等. 短波自由电子激光在原子分子和团簇中的应用[J]. 自然杂志, 2024, 46(3): 203−220 (in Chinese)
Dong R C, Feng J Z, Wang X C, et al. Atomic, molecular and cluster applications of short-wavelength free-electron lasers[J]. Chinese Journal of Nature, 2024, 46(3): 203−220
|
[3] |
张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35(3): 88−93 (in Chinese)
Zhang H, Huang L M, Zhao F, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35(3): 88−93
|
[4] |
甄亭亭, 邓荣兵, 高飞, 等. 1.3 GHz超导加速模组振动响应有限元分析及测试[J]. 核技术, 2022, 45(1): 24−30 (in Chinese)
Zhen T T, Deng R B, Gao F, et al. Finite element analysis and measurement of vibration responses of cryomodule 1.3 GHz superconducting accelerator[J]. Nuclear Techniques, 2022, 45(1): 24−30
|
[5] |
刘克新, 郝建奎, 全胜文, 等. 应用于光源的射频超导加速技术[J]. 强激光与粒子束, 2022, 34(10): 134−142 (in Chinese)
Liu K X, Hao J K, Quan S W, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams, 2022, 34(10): 134−142
|
[6] |
米正辉, 沙鹏, 孙毅, 等. BEPC Ⅱ国产500 MHz超导腔运行综述[J]. 强激光与粒子束, 2018, 30(8): 143−147 (in Chinese)
Mi Z H, Sha P, Sun Y, et al. Operation of domestic 500 MHz superconducting cavity for BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30(8): 143−147
|
[7] |
蒲小云, 侯洪涛, 马震宇, 等. 上海光源500MHz超导腔水平测试[J]. 强激光与粒子束, 2019, 31(11): 121−126 (in Chinese)
Pu X Y, Hou H T, Ma Z Y, et al. Horizontal test of 500 MHz superconducting cavity for SSRF[J]. High Power Laser and Particle Beams, 2019, 31(11): 121−126
|
[8] |
Li H, Jobs M, Kern R S, et al. Characterization of a β =0.5 double spoke cavity with a fixed power coupler[J]. Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927: 63−69
|
[9] |
Li H, Dai J P, Sha P, et al. Development of a 325 MHz β =0.12 superconducting single spoke cavity for China-ADS[J]. Chinese Physics C, 2014, 38(7): 077008 doi: 10.1088/1674-1137/38/7/077008
|
[10] |
Gonnella D, Eichhorn R, Furuta F, et al. Nitrogen-doped 9-cell cavity performance in a test cryomodule for LCLS-Ⅱ[J]. Journal of Applied Physics, 2015, 117(2): 935−937
|
[11] |
Harms E, Hocker A. Performance of 3.9 GHz SRF cavities at Fermilab's ILCTA_MDB horizontal test stand[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1412−1415 doi: 10.1109/TASC.2009.2017843
|
[12] |
刘佰奇, 彭晓华, 翟纪元, 等. 1.3 GHz 9-cell超导腔加速组元的真空系统[J]. 真空科学与技术学报, 2016, 36(5): 538−541 (in Chinese)
Liu B Q, Peng X H, Zhai J Y, et al. Development and testing of vacuum system for 1.3 GHz 9-Cell superconducting accelerator module[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(5): 538−541
|
[13] |
岳泰, 何超峰, 王希龙, 等. 耦合器热窗的极限真空方案模拟分析[J]. 真空, 2024, 61(4): 52−57 (in Chinese)
Yue T, He C F, Wang X L, et al. Simulation analysis of ultimate vacuum scheme for coupler warm windows[J]. Vacuum (China), 2024, 61(4): 52−57
|
[14] |
李鹏馨, 杨涛, 杨仁俊, 等. CSNS-Ⅱ高功率法拉第筒设计与热分析[J]. 机电工程技术, 2023, 52(4): 85−89 (in Chinese)
Li P X, Yang T, Yang R J, et al. Design and thermal analysis of a high-power Faraday cup for CSNS-Ⅱ[J]. Mechanical and Electrical Engineering Technology, 2023, 52(4): 85−89
|
[15] |
朱晓欣, 谭维兵, 苏兆峰, 等. 利用法拉第筒测试环形强流电子束束流[J]. 太赫兹科学与电子信息学报, 2019, 17(3): 536−540 (in Chinese)
Zhu X X, Tan W B, Su Z F, et al. Using Faraday cup for measurement of intense pulsed electric beams[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(3): 536−540
|
[16] |
徐鹍鹏, 惠虎, 宫建国. 应变强化型真空绝热容器的非线性数值模拟[J]. 化学工程, 2016, 44(9): 70−74 (in Chinese) doi: 10.3969/j.issn.1005-9954.2016.09.014
Xu K P, Hui H, Gong J G. Nonlinear numerical simulation of the strain-strengthening vacuum insulated vessel[J]. Chemical Engineering (China), 2016, 44(9): 70−74 doi: 10.3969/j.issn.1005-9954.2016.09.014
|
[17] |
何绍栋, 王华新, 刘宝瑞, 等. 某大型真空容器结构稳定性分析与试验评价[J]. 真空科学与技术学报, 2023, 43(5): 410−417 (in Chinese)
He S D, Wang H X, Liu B R, et al. Structural stability analysis and test evaluation for large vacuum vessel[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(5): 410−417
|
[18] |
王亮, 任晓芳. 异形真空室壳体的结构强度分析[J]. 机械设计与制造, 2011(8): 191−193 (in Chinese) doi: 10.3969/j.issn.1001-3997.2011.08.073
Wang L, Ren X F. Structural strength analysis for an alien vacuum shell[J]. Machinery Design and Manufacture, 2011(8): 191−193 doi: 10.3969/j.issn.1001-3997.2011.08.073
|
[19] |
崔志伟, 谢远来, 顾玉明, 等. 负离子源测试平台真空室结构设计及优化[J]. 真空科学与技术学报, 2023, 43(3): 231−237 (in Chinese)
Cui Z W, Xie Y L, Gu Y M, et al. Structural design and optimization of vacuum vessel for negative ion source test facility[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(3): 231−237
|
[20] |
万光海, 王全龙, 武美萍, 等. 管绞车筒体动力学分析及响应面优化研究[J]. 机械科学与技术, 2023, 42(10): 1592−1601 (in Chinese)
Wan G H, Wang Q L, Wu M P, et al. Dynamic analysis and response surface optimization of pipe winch barrel[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1592−1601
|
[21] |
韦韬, 李明, 黄洪, 等. 基于响应面优化的客车后高地板骨架设计[J]. 机械设计与研究, 2022, 38(1): 161−167 (in Chinese)
Wei T, Li M, Huang H, et al. Bus rear high floor skeleton design based on response surface optimization[J]. Machine Design and Research, 2022, 38(1): 161−167
|
[22] |
黄柯, 文永蓬, 周贤周. 利用响应面法的高速齿轮轴多目标优化方法[J]. 机械科学与技术, 2023, 42(7): 1129−1139 (in Chinese)
Huang K, Wen Y P, Zhou X Z. Multi-objective optimization of high-speed gear shaft using response surface method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1129−1139
|
[23] |
凌静秀, 李浩宇, 王乾廷, 等. 基于Kriging模型和MOGA的轮胎成型机辊压支架的轻量化研究[J]. 现代制造工程, 2023(10): 126−134 (in Chinese)
Ling J X, Li H Y, Wang Q T, et al. Structural optimization and lightweighting of tyre forming machine rolling support[J]. Modern Manufacturing Engineering, 2023(10): 126−134
|
[24] |
陈国雄, 曹阳, 吴家雄, 等. 焊接平台龙门架结构轻量化设计[J]. 机械设计与制造, 2024(4): 194−199 (in Chinese) doi: 10.3969/j.issn.1001-3997.2024.04.038
Chen G X, Cao Y, Wu J X, et al. Welding platform gantry structure lightweight design[J]. Machinery Design and Manufacture, 2024(4): 194−199 doi: 10.3969/j.issn.1001-3997.2024.04.038
|
[25] |
李有堂, 连虎强. BFPC立柱结构仿生多目标优化设计[J]. 现代制造工程, 2024(12): 87−93+107 (in Chinese)
Li Y T, Lian H Q. Bionic multi-objective optimization design of BFPC column structure[J]. Modern Manufacturing Engineering, 2024(12): 87−93+107
|
[26] |
刘立富, 冯显英, 李沛刚, 等. 基于响应面法的轮胎动平衡机主轴多目标优化[J]. 制造技术与机床, 2025(2): 171−176+193 (in Chinese)
Liu L F, Feng X Y, Li P G, et al. Multi-objective optimization of tire dynamic balancing machine spindle based on response surface method[J]. Manufacturing Technology and Machine Tool, 2025(2): 171−176+193
|
[27] |
李超, 徐凯, 庞楠, 等. 海洋钢桩清除机具环抱结构参数优化[J]. 机械设计, 2025, 42(3): 150−156 (in Chinese)
Li C, Xu K, Pang N, et al. Parameter optimization of marine steel pile removal equipment’s surrounding structure[J]. Journal of Machine Design, 2025, 42(3): 150−156
|
[28] |
罗吉安, 周星越. 有限单元法分析中应力奇异问题的研究[J]. 廊坊师范学院学报(自然科学版), 2021, 21(4): 42−45+50 (in Chinese)
Luo J A, Zhou X Y. Study on stress singularity in finite element analysis[J]. Journal of Langfang Normal University (Natural Science Edition), 2021, 21(4): 42−45+50
|
[29] |
刘三勇, 黄才英. SolidWorks Simulation有限元分析中应力奇异问题的研究[J]. 现代制造技术与装备, 2020(6): 69−72 (in Chinese)
Liu S Y, Huang C Y. Research on stress singularity problems of finite element analysis based on SolidWorks simulation[J]. Modern Manufacturing Technology and Equipment, 2020(6): 69−72
|
[30] |
王鑫, 戚其松. 有限元分析中应力奇异问题的处理[J]. 机械工程与自动化, 2014(3): 61−63 (in Chinese) doi: 10.3969/j.issn.1672-6413.2014.03.026
Wang X, Qi Q S. Research on stress singularity of finite element analysis[J]. Mechanical Engineering and Automation, 2014(3): 61−63 doi: 10.3969/j.issn.1672-6413.2014.03.026
|
[31] |
国家市场监督管理总局, 国家标准化管理委员会. GB/T 20801.2-2020 压力管道规范 工业管道 第2部分: 材料[S]. 北京: 中国标准出版社, 2020 (in Chinese)
State Administration for Market Regulation, National Standardization Administration. GB/T 20801.2-2020 Pressure piping code-Industrial piping-Part 2: Materials[S]. Beijing: Standards Press of China, 2020
|
[32] |
周连东, 江楠. 国产S30408奥氏体不锈钢应变强化低温容器许用应力及应变确定[J]. 压力容器, 2011, 28(2): 5−10 (in Chinese)
Zhou L D, Jiang N. Allowable stress and strain of strain hardening of cryogenic vessels of S30408 austenitic stainless steels[J]. Pressure Vessel Technology, 2011, 28(2): 5−10
|
[33] |
郑彬, 汪妮妮. 导向悬臂法在管道柔性和支架设计中的应用[J]. 化工设备与管道, 2021, 58(4): 75−79 (in Chinese) doi: 10.3969/j.issn.1009-3281.2021.04.014
Zheng B, Wang N N. Application of guiding cantilever method in design of piping flexibility and supports[J]. Process Equipment and Piping, 2021, 58(4): 75−79 doi: 10.3969/j.issn.1009-3281.2021.04.014
|
[34] |
宋少云, 尹芳. 有限元网格划分中的圣维南原理及其应用[J]. 机械设计与制造, 2012(8): 63−65 (in Chinese)
Song S Y, Yin F. Sain Vaint principle of meshing in finite elememt method and its application[J]. Machinery Design and Manufacture, 2012(8): 63−65
|
[35] |
高艳红, 董俊华, 高炳军. 子模型技术在大型球罐支撑区应力分析及结构优化中的应用[J]. 机械强度, 2010, 32(5): 735−739 (in Chinese)
Gao Y H, Dong J H, Gao B J. Application of sub-model technique in stress analysis and structure optimization of the supporting region of large spherical tank[J]. Journal of Mechanical Strength, 2010, 32(5): 735−739
|
[36] |
高炳军, 高艳红, 李金红. 子模型法在球罐应力分析中的应用[J]. 压力容器, 2009, 26(5): 27−31 (in Chinese)
Gao B J, Gao Y H, Li J H. Application of sub-model technique in stress analysis of spherical tank[J]. Pressure Vessel Technology, 2009, 26(5): 27−31
|