[1] |
Chen Y, Xie B, Liu B, et al. A focused review on engineering application of multi-principal element alloy[J]. Frontiers in Materials, 2021, 8: 816309
|
[2] |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nature communications, 2015, 6(1): 6529 doi: 10.1038/ncomms7529
|
[3] |
Zhuang H, Yu Z, Li L, et al. Multi-principal element materials: Structure, property, and processing[J]. Journal of Applied Physics, 2024, 135(1): 010401 doi: 10.1063/5.0191748
|
[4] |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. Journal of Materials Research, 2018, 33: 3092−3128 doi: 10.1557/jmr.2018.153
|
[5] |
Chen Y, Xu Z, Wang M, et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties[J]. Materials Science and Engineering: A, 2020, 792: 139774 doi: 10.1016/j.msea.2020.139774
|
[6] |
Duan B, Yang Y, He S, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations[J]. Journal of Alloys and Compounds, 2022, 909: 164811 doi: 10.1016/j.jallcom.2022.164811
|
[7] |
Wu Y, Cai Y, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130: 277−280 doi: 10.1016/j.matlet.2014.05.134
|
[8] |
Li C, Huang L, Zhao M, et al. Hot workability of Ti-6Cr-5Mo-5V-4Al alloy[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 20−27
|
[9] |
Long S, Xia Y, Wang P, et al. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation[J]. Journal of Alloys and Compounds, 2019, 796: 65−76 doi: 10.1016/j.jallcom.2019.05.031
|
[10] |
Li C, Huang L, Zhao M, et al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling[J]. Materials Science Engineering: A, 2020, 797: 139925 doi: 10.1016/j.msea.2020.139925
|
[11] |
Feng X, Zhang Z, He Y, et al. Synergistic enhancement of toughness properties of Ti45Zr40Al5Nb5V5 lightweight high-entropy alloy by hot rolling process[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(7): 564−569
|
[12] |
Liu Y, Zhang Z, He Y, et al. Effect of hot rolling temperature on microstructure and mechanical properties of Ti-Zr-V-Nb-Si alloy[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(10): 863−870
|
[13] |
Ren Y, Wu H, Liu B, et al. A novel L12-strengthened AlCoCuFeNi high-entropy alloy with both high hardness and good corrosion resistance[J]. Materials Letters, 2023, 331: 133339 doi: 10.1016/j.matlet.2022.133339
|
[14] |
Gao Q, Song K, Yan D, et al. Structure-property relations of lightweight Ti-Sc-Zr-Nb-V high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 915: 165295 doi: 10.1016/j.jallcom.2022.165295
|
[15] |
Umakoshi Y, Nakano T, Ogawa B, et al. Orientation dependence of fracture behavior of Ti3Al single crystals with D019 structure[J]. Scripta materialia, 1996, 34(7): 1161−1169 doi: 10.1016/1359-6462(95)00645-1
|
[16] |
Dear F, Kontis P, Gault B, et al. Mechanisms of Ti3Al precipitation in hcp α-Ti[J]. Acta Materialia, 2021, 212: 116811 doi: 10.1016/j.actamat.2021.116811
|
[17] |
Luan Q, Duan Q, Wang X, et al. Tensile properties and high temperature creep behavior of microalloyed Ti–Ti3Al–Nb alloys by directional solidification[J]. Materials Science Engineering: A, 2010, 527(16-17): 4484−4496 doi: 10.1016/j.msea.2010.03.096
|
[18] |
XIE B , GUO Y, XU B, et al. Processing map and recrystallization diagram for GH984G18 alloy[J]. Journal of Materials Engineering, 2016, 44(9): 16-23
|
[19] |
Zhou L, Liu Y, Chen W, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb Alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1): 27−35
|
[20] |
Li C, Huang L, Zhao M, et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti–6Cr–5Mo–5V–4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231 doi: 10.1016/j.msea.2021.141231
|
[21] |
Liu Q, Wang Z, Yang H, et al. Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts[J]. Metals, 2020, 10(6): 828 doi: 10.3390/met10060828
|
[22] |
Hall E O. The deformation and ageing of mild steel: III Discussion of results[J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747−753 doi: 10.1088/0370-1301/64/9/303
|
[23] |
Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174: 25−28
|
[24] |
Li T, Liu H, An D, et al. Achieving excellent fatigue crack growth resistance and tensile strength combination in multilayered TC4/TB8 structures[J]. Vacuum, 2024, 222: 113067 doi: 10.1016/j.vacuum.2024.113067
|
[25] |
Romero C, Yang F, Zhang S, et al. Effect of thermomechanical microstructural modification and resulting crystallographic texture on the crack initiation mechanism and fatigue behaviour of PM Ti–6Al–4V[J]. Materials Science and Engineering: A, 2020, 792: 139836 doi: 10.1016/j.msea.2020.139836
|