[1] 连加俤, 陈皇凯, 李根, 等. 夹管式真空界面阀设计与通过性模拟研究[J]. 真空科学与技术学报, 2024, 44(3): 229−242 (in Chinese) Lian J D, Chen H K, Li G, et al. Vacuum interface valve design and pass-through simulation study[J]. Journal of Vacuum Science and Technology, 2024, 44(3): 229−242
[2] 李腾, 赵玺皓, 王君, 等. 双螺杆真空泵新型椭圆弧修正正弦螺旋线螺杆转子设计与模拟[J]. 真空科学与技术学报, 2023, 43(10): 841−847 (in Chinese) Li T, Zhao X H, Wang J, et al. Design and simulation of a new elliptic arc modified sinusoidal spiral screw rotor for twin-screw vacuum pump[J]. Journal of Vacuum Science and Technology, 2023, 43(10): 841−847
[3] 刘树明, 赵斌, 冷基鑫, 等. 粉碎式真空排污泵结构设计与性能分析[J]. 真空, 2020, 57(2): 17−21 (in Chinese) Liu S M, Zhao B, Leng J X, et al. Structure design and performance analysis of pulverized vacuum sewage pump[J]. Vacuum, 2020, 57(2): 17−21
[4] 薛珺. “抽吸-破碎-输送”三功能真空泵的研究[D]. 武汉: 华中科技大学, 2007 (in Chinese) Xue J. Research on three-function vacuum pump with 'Suction, Crushing and Conveying'[D]. Wuhan: Huazhong University of Science and Technology, 2007
[5] Zhang Y L, Yue X J, Yang F, et al. Noise analysis of dry scroll vacuum pump based on experiment and CFD[J]. Vacuum, 2024, 224: 113187
[6] Sun S K, Zhao B, Jia X H, et al. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump[J]. Vacuum, 2017, 137: 195−204 doi: 10.1016/j.vacuum.2017.01.005
[7] 吴学红, 陶文铨, 吕彦力, 等. 不可压缩流动问题快速计算的降阶模型[J]. 中国电机工程学报, 2010, 30(26): 69−74 (in Chinese) Wu X H, Tao W Q, Lv Y L, et al. A reduced order model for fast computation of incompressible flow problems[J]. Proceedings of the CSEE, 2010, 30(26): 69−74
[8] Liu S M, Bao J S, Lu Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems, 2021, 58: 180−195
[9] Wang B, Li Z, Xu Z, et al. Digital twin modeling for structural strength monitoring via transfer learning-based multi-source data fusion[J]. Mechanical Systems and Signal Processing, 2023, 200: 110625
[10] Moi T, Cibicik A. Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An experimental study[J]. Benchmark, 2021(1): 44−55
[11] 周阳, 袁啸林, 江明, 等. 基于改进BP的分子泵故障诊断研究[J]. 真空科学与技术学报, 2024, 44(3): 220−228 (in Chinese) Zhou Y, Yuan X L, Jiang M, et al. Research on fault diagnosis of molecular pump based on improved BP[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(3): 220−228
[12] 匡永麟, 王晓冬, 宁久鑫, 等. 基于神经网络的涡轮分子泵性能预测[J]. 真空科学与技术学报, 2024, 44(9): 811−818 (in Chinese) Kuang Y L, Wang X D, Ning J X, et al. Performance prediction of turbomolecular pump based on neural network[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(9): 811−818
[13] 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1−16 (in Chinese) Tao F, Zhang C Y, Zhang H, et al. Exploration of future equipment: Digital Twin Equipment[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1−16
[14] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1−18 (in Chinese) Tao F, Liu W R, Zhang M, et al. Digital twin five-dimensional model and its application in ten fields[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1−18
[15] Shi H, Song Z, Bai X, et al. A novel digital twin model for dynamical updating and real-time mapping of local defect extension in rolling bearings[J]. Mechanical Systems and Signal Processing, 2023, 193: 110255 doi: 10.1016/j.ymssp.2023.110255
[16] Guo J, Bilal M, Qiu Y, et al. Survey on digital twins for Internet of Vehicles: Fundamentals, challenges, and opportunities[J]. Digital Communications and Networks, 2024, 10(2): 237−247 doi: 10.1016/j.dcan.2022.05.023
[17] Tang Y, Sajadi P, Rahmani Dehaghani M, et al. A systematic online update method for reduced-order-model-based digital twin[J]. Journal of Intelligent Manufacturing, 2024: 1−29
[18] Zhao X, Dao M H, Le Q T. Digital twining of an offshore wind turbine on a monopile using reduced-order modelling approach[J]. Renewable Energy, 2023, 206: 531−551 doi: 10.1016/j.renene.2023.02.067
[19] Wang L, Dong X, Jing L, et al. Research on digital twin modeling method of transformer temperature field based on POD[J]. Energy Reports, 2023, 9: 299−307
[20] Cao Y, Tang X, Gaidai O, et al. Digital twin real time monitoring method of turbine blade performance based on numerical simulation[J]. Ocean Engineering, 2022, 263: 112347 doi: 10.1016/j.oceaneng.2022.112347
[21] Aversano G, Ferrarotti M, Parente A. Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5373−5381 doi: 10.1016/j.proci.2020.06.045
[22] Tong C, Li X, Ju H, et al. A hybrid numerical model for horizontal ground heat exchanger[J]. Renewable Energy, 2024, 230: 120825 doi: 10.1016/j.renene.2024.120825
[23] Wei Z, Tang Y, Chen L, et al. Fast prediction of the performance of the centrifugal pump based on reduced-order model[J]. Energy Reports, 2023, 9: 51−64
[24] Lan H, Tang W, Gong J, et al. Fast prediction of temperature distributions in oil natural air natural transformers using proper orthogonal decomposition reduced-order data-driven modelling[J]. High Voltage, 2024, 9(6): 1246−1259 doi: 10.1049/hve2.12446
[25] Bukka S R, Gupta R, Magee A R, et al. Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models[J]. Physics of Fluids, 2021, 33(1): 013601 doi: 10.1063/5.0030137
[26] Wang S, Khatir S, Wahab M A. Proper Orthogonal Decomposition for the prediction of fretting wear characteristics[J]. Tribology International, 2020, 152: 106545 doi: 10.1016/j.triboint.2020.106545
[27] Chen G, Qi B, Hu W, et al. A fast POD prediction method for hydrogen leakage at different pressures[J]. International Journal of Hydrogen Energy, 2024, 49: 1391−1404 doi: 10.1016/j.ijhydene.2023.09.282