[1] |
Li T, Li L, Sun H, et al. Porous ionic membrane based flexible humidity sensor and its multifunctional applications[J]. Advanced science, 2017, 4(5): 1600404 doi: 10.1002/advs.201600404
|
[2] |
Han S, Li S, Fu X, et al. Research progress of flexible piezoresistive sensors based on polymer porous materials[J]. ACS sensors, 2024, 9(8): 3848−3863 doi: 10.1021/acssensors.4c00836
|
[3] |
问磊. 多孔柔性电阻式力敏传感器的设计及其应用[D]. 东南大学, 2023 (in Chinese)
Wen L. Design of porous flexible resistive force sensitive sensor and its application[D]. Southeast University, 2023
|
[4] |
董涧锟, 师文钊, 刘瑾姝, 等. 柔性相变复合材料及其应用研究进展[J]. 高分子材料科学与工程, 2024, 40(1): 179−190 (in Chinese)
Dong J K, Shi W Z, Liu J S, et al. Progress of flexible phase change composites and their applications[J]. Polymer Materials Science and Engineering, 2024, 40(1): 179−190
|
[5] |
张磊, 张晓海, 赵强. 基于MXene/RGO复合材料的具有多孔压力敏感结构的柔性可穿戴传感器[J]. 测试技术学报, 2024, 38(5): 467−473 (in Chinese)
Zhang L, Zhang X H, Zhao Q. Flexible wearable sensors with porous pressure-sensitive structures based on MXene/RGO composites[J]. Journal of Testing Technology, 2024, 38(5): 467−473
|
[6] |
Han S T, Peng H, Sun Q, et al. An overview of the development of flexible sensors[J]. Advanced materials, 2017, 29(33): 1700375 doi: 10.1002/adma.201700375
|
[7] |
Pan L, Xie Y, Yang H, et al. Flexible magnetic sensors[J]. Sensors, 2023, 23(8): 4083 doi: 10.3390/s23084083
|
[8] |
Cui X, Xi Y, Tu S, et al. An overview of flexible sensors from ionic liquid-based gels [J]. TrAC Trends in Analytical Chemistry, 2024: 117662
|
[9] |
Deshpande T D, Singh Y R, Patil S, et al. Adhesion strength and viscoelastic properties of polydimethylsiloxane (PDMS) based elastomeric nanocomposites with embedded electrospun nanofibers[J]. Soft Matter, 2019, 15(28): 5739−5747 doi: 10.1039/C9SM00533A
|
[10] |
Sun P, Fang Z, Sima W, et al. Microstructured self-healing flexible tactile sensors inspired by bamboo leaves[J]. ACS Applied Materials & Interfaces, 2024, 16(44): 60699−60714
|
[11] |
Zhang Z, Liu G, Li Z, et al. Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications[J]. Advances in Colloid and Interface Science, 2023: 102988
|
[12] |
Liao R, Zhao X, Liu M. Inverted molding with porous skeleton nickel foam for preparing flexible multi-wall carbon nanotubes pressure sensors[J]. Sensors, 2023, 23(23): 9560 doi: 10.3390/s23239560
|
[13] |
Zhai W, Xia Q, Zhou K, et al. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability[J]. Chemical Engineering Journal, 2019, 372: 373−382 doi: 10.1016/j.cej.2019.04.142
|
[14] |
Ni Y, Liu L, Huang J, et al. Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance[J]. Journal of Materials Science & Technology, 2022, 130: 184−192
|
[15] |
Chen T, Wang R, Li X. Capacitive flexible pressure sensor based on porous GR/PDMS composite dielectric layer[J]. AIP Advances, 2024, 14(5): 055318 doi: 10.1063/5.0211082
|
[16] |
Cheng J, You L, Cai X, et al. Fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and high ductility for wearable flexible sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26338−26349
|
[17] |
Masihi S, Panahi M, Maddipatla D, et al. A novel printed fabric based porous capacitive pressure sensor for flexible electronic applications[C]. Proceedings of the 2019 IEEE sensors. IEEE, 2019
|
[18] |
Song Z, Zhao L, Chang C, et al. A flexible, highly sensitive porous PDMS tactile sensor based on the physical foaming method[J]. Journal of Electronic Materials, 2022, 51(12): 7173−7181 doi: 10.1007/s11664-022-09956-2
|
[19] |
Lee H, Lee J, Seong B, et al. Printing conductive micro‐web structures via capillary transport of elastomeric ink for highly stretchable strain sensors[J]. Advanced Materials Technologies, 2018, 3(2): 1700228 doi: 10.1002/admt.201700228
|
[20] |
Tang Z H, Xue S S, Wang D Y, et al. 3D printing of soft and porous composite pressure sensor with monotonic and positive resistance response[J]. Composites Science and Technology, 2023, 241: 110126 doi: 10.1016/j.compscitech.2023.110126
|
[21] |
Zhou J, Ww X, Chen Y, et al. 3D printed template‐directed assembly of multiscale graphene structures[J]. Advanced Functional Materials, 2022, 32(18): 2105879 doi: 10.1002/adfm.202105879
|
[22] |
Pan S, Zhang T, Zhang C, et al. Fabrication of a high performance flexible capacitive porous GO/PDMS pressure sensor based on droplet microfluidic technology[J]. Lab on a Chip, 2024, 24(6): 1668−1675 doi: 10.1039/D4LC00021H
|
[23] |
Zhang C, Sun J, Lu Y, et al. Nanocrack-based strain sensors[J]. Journal of Materials Chemistry C, 2021, 9(3): 754−772 doi: 10.1039/D0TC04346J
|
[24] |
Zhou Y, Lian H, Li Z, et al. Crack engineering boosts the performance of flexible sensors[J]. View, 2022, 3(5): 20220025 doi: 10.1002/VIW.20220025
|
[25] |
Shen C, Zhang C, Cao G, et al. Waterproof strain sensor based on silver/graphene composite film for fine and large strain detection[J]. Measurement, 2025, 239: 115482 doi: 10.1016/j.measurement.2024.115482
|
[26] |
Yang H, Yao X, Yuan L, et al. Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading[J]. Nanoscale, 2019, 11(2): 578−586 doi: 10.1039/C8NR07737A
|