[1] |
刘建民, 顾晔, 胡显军. 真空感应炉熔炼Inconel713C氧氮含量控制工艺[J]. 真空科学与技术学报, 2020, 40(11): 1075−1078 (in Chinese)
Liu J M, Gu Y, Hu X J. Removal of O/N-impurities in molten inconel713C alloy by carbon reduction[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(11): 1075−1078
|
[2] |
Ramos Fabián N I, Mejía I, García Domínguez M, et al. Metallographic, structural and mechanical characterization of a low-density austenitic Fe–Mn–Al–C steel microalloyed with Nb in hot-rolling condition[J]. MRS Advances, 2023, 8(22): 1291−1295 doi: 10.1557/s43580-023-00710-2
|
[3] |
Gonzaleza A, Luis E, Bedollajacuinde A, et al. Influence of rare earth additions to an inconel 718 alloy[J]. MRS Advances, 2020, 5(59-60): 3035−3043 doi: 10.1557/adv.2020.387
|
[4] |
肖代红, 孙伯儒, 吴名东, 等. Mn对挤压态Al-Li-Zr-Sc合金组织性能的影响[J]. 特种铸造及有色合金, 2023, 43(5): 583−589 (in Chinese)
Xiao D H, Sun B R, Wu M D, et al. Effects of Mn on microstructure and properties of extruded Al-Li-Zr-Sc alloys[J]. Special Casting& Nonferrous Alloys, 2023, 43(5): 583−589
|
[5] |
Xu J J, Zheng W, Jing C N, et al. Effect of annealing time on microstructure and mechanical properties of Fe–C–Mn–Al–Si steel[J]. Materials Science and Technology, 2024, 40(5): 377−386 doi: 10.1177/02670836231212616
|
[6] |
Cao L, Han L L, Wang G C, et al. Effects of Mn content on the formation of inclusions in high aluminum steel[J]. Metallurgical and Materials Transactions B, 2023, 54(5): 2680−2693
|
[7] |
Wen P Y, Li S S, Zhang Y Y, et al. Austenite tailoring for strength and ductility enhancement in medium Mn steel: a brief review[J]. JOM, 2024, 76(9): 5557−5568 doi: 10.1007/s11837-024-06748-3
|
[8] |
Jiang H T, Zhuang B T, Duan X G, et al. Element distribution and diffusion Behavior in Q & P steel during partitioning[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(11): 1050−1059
|
[9] |
Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Materialia, 2017, 135: 215−225 doi: 10.1016/j.actamat.2017.06.035
|
[10] |
Moon J, Park S J, Jang J H, et al. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition[J]. Acta Materialia, 2018, 147: 226−235 doi: 10.1016/j.actamat.2018.01.051
|
[11] |
Zambrano O A. A general perspective of Fe-Mn-Al-C steels[J]. Journal of Materials Science, 2018, 53(20): 14003−14062 doi: 10.1007/s10853-018-2551-6
|
[12] |
郭广飞, 章小浒, 任明皓, 等. 焊接工艺对LNG储罐用高锰钢焊接接头组织和性能的影响[J]. 压力容器, 2024, 41(5): 29−35 (in Chinese)
Guo G F, Zhang X H, Ren M H, et al. The effect of welding processes on the microstructure and properties of welded joints of high manganese steel for LNG storage tanks[J]. Pressure Vessel Technology, 2024, 41(5): 29−35
|
[13] |
杨壹, 刘让贤, 杨浩坤, 等. 固溶温度对轻质超高锰钢组织及性能的影响[J]. 金属热处理, 2023, 48(8): 113−117 (in Chinese)
Yang Y, Liu R X, Yang H K, et al. Effect of solution temperature on microstructure and properties of lightweight high manganese steel[J]. Heat Treatment of Metals, 2023, 48(8): 113−117
|
[14] |
贾刘兵, 季晨曦, 董文亮, 等. RH真空冶炼过程中锰损[J]. 中国冶金, 2021, 31(6): 68−72 (in Chinese)
Jia L B, Ji C X, Dong W L, et al. Manganese loss in RH vacuum smelting process[J]. China Metallurgy, 2021, 31(6): 68−72
|
[15] |
杨丽梅, 印传磊, 马建超, 等. VD炉真空处理过程中钢水锰损的分析研究[J]. 现代冶金, 2017, 45(6): 31−33 (in Chinese)
Yang L M, Yin C L, Ma J C, et al. Analysis of manganese loss in molten steel during vacuum treatment in VD furnace[J]. Modern Transportation and Metallurgical Materials, 2017, 45(6): 31−33
|
[16] |
何瑞翔, 张翔, 马国军, 等. 钢液真空处理过程中Mn挥发动力学研究[J]. 武汉科技大学学报, 2024, 47(2): 81−86 (in Chinese)
He R X, Zhang X, Ma G J, et al. Kinetics of Mn volatilization during vacuum treatment of molten steel[J]. Journal of Wuhan University of Science and Technology, 2024, 47(2): 81−86
|
[17] |
Chu J H, Bao Y P. Study on the relationship between vacuum denitrification and manganese evaporation behaviours of manganese steel melts[J]. Vacuum, 2021, 192: 110420 doi: 10.1016/j.vacuum.2021.110420
|
[18] |
宋磊, 王敏, 李新, 等. 含锰钢RH真空过程锰的迁移行为[J]. 工程科学学报, 2020, 42(3): 331−339 (in Chinese)
Song L, Wang M, Li X, et al. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331−339
|
[19] |
王振东, 曹孔健, 何纪龙. 感应炉冶炼[M]. 北京: 化学工业出版社, 2007: 298−659 (in Chinese)
Wang Z D, Cao K J, He J L. Induction furnace smelting[M]. Beijing: Chemical Industry Press, 2007: 298−659
|
[20] |
刘建民, 姜彩伟, 胡显军. 真空感应炉冶炼焊丝钢 Mn 含量控制工艺[J]. 真空科学与技术学报, 2017, 37(9): 928−932 (in Chinese)
Liu J M, Jiang C W, Hu X J. Manganese-doping optimization in molten steel for welding-wire in vacuum induction furnace[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(9): 928−932
|
[21] |
Li H B, Lu P C, Feng H, et al. Influence mechanism of crucible materials on cleanliness and inclusion characteristics of high nitrogen stainless bearing steel during vacuum carbon deoxidation[J]. Metallurgical and Materials Transactions B, 2023, 54(3): 1099−1112
|
[22] |
Feng H, Li H B, Liu Z Z, et al. Cleanliness control of high nitrogen stainless bearing steel by vacuum carbon deoxidation in a PVIM furnace[J]. Metallurgical and Materials Transactions B, 2021, 52(6): 1−11
|
[23] |
刘建民, 姜彩伟, 胡显军, 等. 工业纯铁铝氧含量控制工艺[J]. 中国冶金, 2023, 33(9): 87−95 (in Chinese)
Liu J M, Jiang C W, Hu X J, et al. Control process of Al and O content in industrial pure iron[J]. China Metallurgy, 2023, 33(9): 87−95
|
[24] |
何肖飞, 胡成飞, 徐乐, 等. 总氧含量对齿轮钢中非金属夹杂物的影响[J]. 工程科学学报, 2021, 43(4): 537−544 (in Chinese)
He X F, Hu C F, Xu L, et al. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537−544
|
[25] |
琚立颖, 谷少鹏, 谭敏, 等. 钢中非金属夹杂物性质第一性原理计算[J]. 中国冶金, 2024, 34(2): 69−82 (in Chinese)
Ju L Y, Gu S P, Tan M, et al. First principle calculation of non-metallic inclusions properties in steel[J]. China Metallurgy, 2024, 34(2): 69−82
|
[26] |
Liang W, Geng R M, Zhi J G, et al. Oxide metallurgy technology in high strength steel: a review[J]. Materials, 2022, 15(4): 1350−1367 doi: 10.3390/ma15041350
|
[27] |
Pokorný P, Vojtek T, Jambor M, et al. Effect of underload cycles on oxide-induced crack closure development in Cr-Mo low-alloy steel[J]. Materials, 2021, 14(10): 2530−2552 doi: 10.3390/ma14102530
|
[28] |
Wang Y, Li C R, Wang L Z, et al. Effect of yttrium treatment on alumina inclusions in high carbon steel[J]. Journal of Iron and Steel Research International, 2021, 29(4): 1−10
|
[29] |
袁艺, 杨树峰, 刘威, 等. 镍基高温合金真空感应熔炼碳氧反应数值模拟[J]. 中国冶金, 2023, 33(2): 73−79 (in Chinese)
Yuan Y, Yang S F, Liu W, et al. Numerical simulation of carbon-oxygen reaction in vacuum induction melting of nickel-based super alloys[J]. China Metallurgy, 2023, 33(2): 73−79
|
[30] |
蔡伟, 吴巍, 杨利彬, 等. 影响复吹转炉钢液碳氧积的机理分析与应用实践[J]. 钢铁, 2024, 59(4): 74−84 (in Chinese)
Cai W, Wu W, Yang L B, et al. Mechanism analysis and application practice of influencing carbon-oxygen product in combined blown converter[J]. Iron& Steel, 2024, 59(4): 74−84
|
[31] |
肖邦志, 朱万军, 蒋兴平, 等. 转炉低锰钢冶炼工艺实践[J]. 炼钢, 2024, 40(3): 15−19,38 (in Chinese)
Xiao B Z, Zhu W J, Jiang X P, et al. Process practice of low manganese steel in converter[J]. Steelmaking, 2024, 40(3): 15−19,38
|
[32] |
杨文远, 蒋晓放, 王明林, 等. 转炉炼钢过程中锰氧化的研究[J]. 炼钢, 2021, 37(3): 1−9,43 (in Chinese)
Yang W Y, Jiang X F, Wang M L, et al. Research on manganese oxidation in the process of converter steel making[J]. Steelmaking, 2021, 37(3): 1−9,43
|