电输运测量在拓扑量子材料研究中的应用

上一篇

下一篇

杨阳, 杨帆. 2025: 电输运测量在拓扑量子材料研究中的应用, 物理, 54(5): 320-331. doi: 10.7693/wl20250503
引用本文: 杨阳, 杨帆. 2025: 电输运测量在拓扑量子材料研究中的应用, 物理, 54(5): 320-331. doi: 10.7693/wl20250503
YANG Yang, YANG Fan. 2025: Applications of electrical transport measurements in the study of topological quantum materials, Physics, 54(5): 320-331. doi: 10.7693/wl20250503
Citation: YANG Yang, YANG Fan. 2025: Applications of electrical transport measurements in the study of topological quantum materials, Physics, 54(5): 320-331. doi: 10.7693/wl20250503

电输运测量在拓扑量子材料研究中的应用

    通讯作者: 杨帆,email:fanyangphys@tju.edu.cn
  • 基金项目:

    国家自然科学基金(批准号:11904259)资助项目

Applications of electrical transport measurements in the study of topological quantum materials

    Corresponding author: YANG Fan, fanyangphys@tju.edu.cn
  • 摘要: 拓扑量子材料是一类具有非平庸拓扑序的物质,其在低耗散电子器件、拓扑量子计算和自旋电子学等领域展现出广阔的应用前景。作为研究拓扑量子材料的关键实验技术,电输运测量不仅在揭示电子能带结构和探测拓扑表面态方面发挥了关键作用,也为新型拓扑量子器件的设计与优化提供了重要技术支撑。文章首先介绍电输运测量的基本原理与实验方法,随后综述其在不同类型拓扑量子材料研究中的应用,最后简要探讨本领域未来的发展方向及挑战。
  • 加载中
  • Hasan M Z,Kane C L. Rev. Mod. Phys.,2010,82:3045
    Qi X,Zhang S. Rev. Mod. Phys.,2011,83:1057
    Ando Y. J. Phys. Soc. Jpn.,2013,82:102001
    Kumar N,Guin S N,Manna K et al. Chem. Rev.,2020,121:2780
    Narang P,Garcia C A,Felser C. Nat. Mater.,2021,20:293
    von Klitzing K,Dorda G,Pepper M. Phys. Rev. Lett.,1980, 45:494
    Thouless D J,Kohmoto M,Nightingale M P et al. Phys. Rev. Lett.,1982,49:405
    Kohmoto M. Ann. Phys. (New York),1985,160:343
    Berry M V. Proc. R. Soc. Lond. A:Math. Phys. Sci.,1984,392:45
    Hatsugai Y. Phys. Rev. Lett.,1993,71:3697
    Sato M,Ando Y. Rep. Prog. Phys.,2017,80:76501
    Sharma P,Karn N K,Awana V S. Supercond. Sci. Technol., 2022,35:083003
    Haldane F D M. Phys. Rev. Lett.,1988,61:2015
    Kane C L,Mele E J. Phys. Rev. Lett.,2005,95:146802
    Bernevig B A,Hughes T L,Zhang S. Science,2006,314:1757
    König M,Wiedmann S,Brüne C et al. Science,2007,318:766
    Roth A,Brüne C,Buhmann H et al. Science,2009,325:294
    König M,Buhmann H,Molenkamp L W et al. J. Phys. Soc. Jpn.,2008,77:31007
    Lodge M S,Yang S A,Mukherjee S et al. Adv. Mater.,2021,33: 2008029
    Liu C,Hughes T L,Qi X et al. Phys. Rev. Lett.,2008,100: 236601
    Knez I,Du R,Sullivan G. Phys. Rev. Lett.,2011,107:136603
    Knez I,Du R,Sullivan G. Phys. Rev. Lett.,2012,109:186603
    Du L,Knez I,Sullivan G et al. Phys. Rev. Lett.,2015,114: 96802
    Wu S,Fatemi V,Gibson Q D et al. Science,2018,359:76
    Fei Z,Palomaki T,Wu S et al. Nat. Phys.,2017,13:677
    Tang S,Zhang C,Wong D et al. Nat. Phys.,2017,13:683
    Song Y,Jia Z,Zhang D et al. Nat. Comm.,2018,9:4071
    Zhou J,Feng W,Liu C et al. Nano Lett.,2014,14:4767
    Shumiya N,Hossain M S,Yin J et al. Nat. Mater.,2022,21: 1111
    Yang M,Liu Y,Zhou W et al. ACS Nano,2022,16:3036
    Zhuang J,Li J,Liu Y et al. ACS Nano,2021,15:14850
    Fu L,Kane C L,Mele E J. Phys. Rev. Lett.,2007,98:106803
    Hsieh D,Qian D,Wray L et al. Nature,2008,452:970
    Zhang H,Liu C,Qi X et al. Nat. Phys.,2009,5:438
    Chen J,Qin H J,Yang F et al. Phys. Rev. Lett.,2010,105: 176602
    Chen J,He X Y,Wu K H et al. Phys. Rev. B,2011,83:241304
    Steinberg H,Laloë J,Fatemi V et al. Phys. Rev. B,2011,84: 233101
    Analytis J G,McDonald R D,Riggs S C et al. Nat. Phys.,2010, 6:960
    Ren Z,Taskin A A,Sasaki S et al. Phys. Rev. B,2010,82: 241306
    Sacépé B,Oostinga J B,Li J et al. Nat. Comm.,2011,2:575
    Xiong J,Luo Y,Khoo Y et al. Phys. Rev. B,2012,86:45314
    Taskin A A,Sasaki S,Segawa K et al. Phys. Rev. Lett.,2012, 109:66803
    Călugăru D,Juričić V,Roy B. Phys. Rev. B,2019,99:41301
    Yang Y,Wang J,Li K et al. J. Condens. Matter Phys.,2024,36: 283002
    Schindler F,Wang Z,Vergniory M G et al. Nat. Phys.,2018, 14:918
    Aggarwal L,Zhu P,Hughes T L et al. Nat. Mater.,2021,12: 4420
    Choi Y B,Xie Y,Chen C Z et al. Nat. Mater.,2020,19:974
    Lee J,Kwon J,Lee E et al. Nat. Comm.,2023,14:1801
    Noguchi R,Kobayashi M,Jiang Z et al. Nat. Mater.,2021, 20:473
    Shumiya N et al. Nat. Mater.,2022,21:1111
    Zhao W,Yang M,Xu R et al. Nat. Mater.,2023,14:8089
    Hossain M S,Zhang Q,Wang Z et al. Nat. Phys.,2024,20:776
    Hossain M S,Schindler F,Islam R et al. Nature,2024,628:527
    Tokura Y,Yasuda K,Tsukazaki A. Nat. Rev. Phys.,2019,1:126
    Wang P,Ge J,Li J et al. Innovation,2021,2:100098
    Liu C,Qi X,Dai X et al. Phys. Rev. Lett.,2008,101:146802
    Yu R,Zhang W,Zhang H et al. Science,2010,329:61
    Nomura K,Nagaosa N. Phys. Rev. Lett.,2011,106:166802
    Chang C,Zhang J,Feng X et al. Science,2013,340:167
    Chang C,Zhao W,Kim D Y et al. Nat. Mater.,2015,14:473
    Ou Y,Liu C,Jiang G et al. Adv. Mater.,2018,30:1703062
    Mogi M et al. Appl. Phys. Lett.,2015,107:182401
    Li J,Li Y,Du S et al. Sci. Adv.,2019,5:w5685
    Deng Y,Yu Y,Shi M Z et al. Science,2020,367:895
    Ge J,Liu Y,Li J et al. Natl. Sci. Rev.,2020,7:1280
    Liu C,Wang Y,Li H et al. Nat. Mater.,2020,19:522
    Lv B Q,Qian T,Ding H. Rev. Mod. Phys.,2021,93:25002
    Xu S,Liu C,Kushwaha S K et al. Science,2015,347:294
    Yi H,Wang Z,Chen C et al. Sci. Rep.,2014,4:6106
    Moll P J W,Nair N L,Helm T et al. Nature,2016,535:266
    Lv B Q,Xu N,Weng H M et al. Nat. Phys.,2015,11:724
    Xu S,Alidoust N,Belopolski I et al. Nat. Phys.,2015,11:748
    Xu S et al. Sci. Adv.,2015,1:e1501092
    Wu Y,Mou D,Jo N H et al. Phys. Rev. B,2016,94:121113
    Li P,Wen Y,He X et al. Nat. Comm.,2017,8:2150
    Borisenko S et al. Phys. Rev. Lett.,2014,113:27603
    Neupane M,Xu S,Sankar R et al. Nat. Comm.,2014,5:3786
    Liu Z K,Jiang J,Zhou B et al. Nat. Mater.,2014,13:677
    Yan M,Huang H,Zhang K et al. Nat. Comm.,2017,8:257
    Bahramy M S et al. Nat. Mater.,2018,17:21
    Zhang K,Yan M,Zhang H et al. Phys. Rev. B,2017,96:125102
    Ghosh B et al. Phys. Rev. B,2019,100:195134
    He L P et al. Phys. Rev. Lett.,2014,113:246402
    Cao J,Liang S,Zhang C et al. Nat. Comm.,2015,6:7779
    Xiang Z J et al. Phys. Rev. Lett.,2015,115:226401
    Zhao Y,Liu H,Zhang C et al. Phys. Rev. X,2015,5:31037
    Xiong J,Kushwaha S K,Liang T et al. Science,2015,350:413
    Huang X,Zhao L,Long Y et al. Phys. Rev. X,2015,5:31023
    Hirschberger M et al. Nat. Mater.,2016,15:1161
    Li H,He H,Lu H et al. Nat. Comm.,2016,7:10301
    Zhang C,Xu S,Belopolski I et al. Nat. Comm.,2016,7:10735
    Guo S,Sankar R,Chien Y et al. Nat. Comm.,2016,6:27487
    Li H,Wang H,He H et al. Phys. Rev. B,2018,97:201110
    Wu M,Zheng G,Chu W et al. Phys. Rev. B,2018,98:161110
    McGuire T R,Potter R I. IEEE Trans. Magn.,1975,11:1018
    Taskin A A,Legg H F,Yang F et al. Nat. Mater.,2017,8:1340
    Liu Q,Fei F,Chen B et al. Phys. Rev. B,2019,99:155119
    Meng J et al. Phys. Condens. Matter.,2019,32:015702
    Wang C M et al. Phys. Rev. Lett.,2017,119:136806
    Lu H. Natl. Sci. Rev.,2019,6:208
    Li S,Wang C M,Du Z Z et al. npj Quantum Mater.,2021,6:96
    Zhang C,Zhang Y,Yuan X et al. Nature,2019,565:331
    Uchida M et al. Nat. Comm.,2017,8:2274
    Schumann T D A et al. Phys. Rev. Lett.,2018,120:16801
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览数:  50
  • PDF下载数:  17
  • 施引文献:  0
出版历程
  • 收稿日期:  2025-02-14

电输运测量在拓扑量子材料研究中的应用

    通讯作者: 杨帆,email:fanyangphys@tju.edu.cn
  • 1 天津大学物理学系 量子交叉研究中心 天津 300350;
  • 2 天津市低维功能材料物理与制备技术重点实验室 天津 300350
基金项目: 

摘要: 拓扑量子材料是一类具有非平庸拓扑序的物质,其在低耗散电子器件、拓扑量子计算和自旋电子学等领域展现出广阔的应用前景。作为研究拓扑量子材料的关键实验技术,电输运测量不仅在揭示电子能带结构和探测拓扑表面态方面发挥了关键作用,也为新型拓扑量子器件的设计与优化提供了重要技术支撑。文章首先介绍电输运测量的基本原理与实验方法,随后综述其在不同类型拓扑量子材料研究中的应用,最后简要探讨本领域未来的发展方向及挑战。

English Abstract

参考文献 (104)

目录

/

返回文章
返回